5.2 Error Feedback Formulation

Stott and Alsac (1) and Chan and Brandwajn (2) describe transformer tap adjustments as an error feedback formula

a n e w - a o l d = α ( V k s p V k ) a^{new}-a^{old}=\alpha\left(\frac{V_{k}^{sp}}{V_{k}}\right) (44)

where all quantities are expressed in per unit. The per unit voltage transformation ratio apu is computed as follows

a p u = V p p u V s p u = V p V p n o m V s V s n o m a^{pu}=\frac{V_{p}^{pu}}{V_{s}^{pu}}=\frac{\frac{V_{p}}{V_{p}^{nom}}}{\frac{V_% {s}}{V_{s}^{nom}}}

which simplifies to

a p u = V s n o m V p V p n o m V s = ( V p V s ) ( V s n o m V p n o m ) = a a n o m a^{pu}=\frac{V_{s}^{nom}\frac{V_{p}}{V_{p}^{nom}}}{V_{s}}=\left(\frac{V_{p}}{V% _{s}}\right)\left(\frac{V_{s}^{nom}}{V_{p}^{nom}}\right)=\frac{a}{a^{nom}}

where anom is the nominal voltage transformation ratio. Therefore, Equation 44 is equivalent to

a n e w a n o m - a o l d a n o m = α V k - V k s p V k b a s e \frac{a^{new}}{a^{nom}}-\frac{a^{old}}{a^{nom}}=\alpha\frac{V_{k}-V_{k}^{sp}}{% V_{k}^{base}}

or

a n e w - a o l d = a n o m α V k - V k s p V k b a s e a^{new}-a^{old}=a^{nom}\alpha\frac{V_{k}-V_{k}^{sp}}{V_{k}^{base}}

in physical quantities. Solving for the updated transformation ratio yields

a n e w = a o l d + a n o m α V k - V k s p V k b a s e a^{new}=a^{old}+a^{nom}\alpha\frac{V_{k}-V_{k}^{sp}}{V_{k}^{base}} (45)

Computation of α \alpha , the sensitivity of the regulated voltage to changes in transformation ratio, is discussed in Section 5.3.