4.2 Transfer Admittances

In the context of modeling and analysis of electrical networks, the transfer admittances of a transformer can be thought of as the device’s impact on the off-diagonal elements of of the nodal admittance matrix Ybus.

4.2.1 Primary to Secondary

Equation 19 defines the transfer admittance from the transformer’s primary to its secondary as

𝐘𝐩𝐬=-𝐘𝐋𝐚\mathbf{{Y}_{ps}=-\frac{Y_{L}}{a^{\star}}} (31)

Substituting Equation 25 and resolving the tap ratio into polar form

𝐘𝐩𝐬=-𝐭𝐘𝐋=-tejδ𝐘𝐋\mathbf{Y_{ps}=-t^{\star}Y_{L}}=-te^{j\delta}\mathbf{Y_{L}}

Expressing the tap ratio and leakage admittance in rectangular form

𝐘𝐩𝐬=-t(cosδ+jsinδ)(gL+jbL)\mathbf{Y_{ps}}=-t(\cos\delta+j\sin\delta)(g_{L}+jb_{L})

Carrying out the multiplications then collecting real and imaginary terms

𝐘𝐩𝐬=-t((-bLsinδ+gLcosδ)+j(gLsinδ+bLcosδ))\mathbf{Y_{ps}}=-t((-{b_{L}}\sin\delta+{g_{L}}\cos\delta)+j({g_{L}}\sin\delta+% {b_{L}}\cos\delta))

Therefore,

𝐘𝐩𝐬=-t(gps+jbps)\mathbf{{Y}_{ps}}=-t({g}_{ps}+j{b}_{ps}) (32)

where

gps=-bLsinδ+gLcosδg_{ps}=-{b_{L}}\sin\delta+{g_{L}}\cos\delta (33)

and

bps=gLsinδ+bLcosδb_{ps}={g_{L}}\sin\delta+{b_{L}}\cos\delta (34)

4.2.2 Secondary to Primary

Equation 20 defines the transfer admittance from the transformer’s secondary to its primary as

𝐘𝐬𝐩=-𝐘𝐋𝐚\mathbf{Y_{sp}=-\frac{Y_{L}}{a}} (35)

Substituting Equation 25 and resolving the tap ratio into polar form

𝐘𝐬𝐩=-𝐭𝐘𝐋=-tejδ𝐘𝐋\mathbf{Y_{sp}=-t^{\star}Y_{L}}=-te^{j\delta}\mathbf{Y_{L}}

Expressing the tap ratio and leakage admittance in rectangular form

𝐘𝐬𝐩=-t(cos(-δ)+jsin(-δ))(gL+jbL)\mathbf{Y_{sp}}=-t(\cos(-\delta)+j{\sin(-\delta)})(g_{L}+jb_{L})

Invoking the trigonometric identities cos(-δ)=cosδ\cos(-\delta)=\cos\delta and sin(-δ)=-sinδ\sin(-\delta)=-\sin\delta the equation becomes

𝐘𝐬𝐩=-t(cosδ-jsinδ)(gL+jbL)\mathbf{Y_{sp}}=-t(\cos\delta-j\sin\delta)(g_{L}+jb_{L})

Carrying out the multiplications then collecting real and imaginary terms

𝐘𝐬𝐩=-t((bLsinδ+gLcosδ)+j(-gLsinδ+bLcosδ))\mathbf{Y_{sp}}=-t(({b_{L}}\sin\delta+{g_{L}}\cos\delta)+j(-{g_{L}}\sin\delta+% {b_{L}}\cos\delta))

Therefore,

𝐘𝐬𝐩=-t(gsp+jbsp)\mathbf{Y_{sp}}=-t(g_{sp}+jb_{sp}) (36)

where

gsp=bLsinδ+gLcosδg_{sp}={b_{L}}\sin\delta+{g_{L}}\cos\delta (37)

and

bsp=-gLsinδ+bLcosδb_{sp}=-{g_{L}}\sin\delta+{b_{L}}\cos\delta (38)

4.2.3 Observations on Computational Sequence

The preceding results suggest the computational sequence is not too crucial. The values sin δ\delta and cos δ\delta appearing in Equation 32 and Equation 36 should only be computed once. Marginal benefits may also accrue from a single computation of the terms gL sin δ\delta, gL cos δ\delta, bL sin δ\delta, bL cos δ\delta and t2.