• 1
    L. Fox, An Introduction to Numerical Linear Algebra, Clarendon Press, Oxford, 1964.
  • 2
    G. Golub and C. Van Loan, Matrix Computations, The Johns Hopkins University Press, Baltimore, 1983.
  • 3
    I. Duff, A. Erisman, and J. Reid, Direct Methods for Sparse Matrices, Clarendon Press, Oxford, 1986.
  • 4
    W. Press, B. Flannery, S. Teukolsky, and W. Vetterling, Numerical Recipes in C, Cambridge University Press, Cambridge and New York, 1988.
  • 5
    S. Conte and C. de Boor, Elementary Numerical Analysis, McGraw-Hill Book Company, New York, 1972.
  • 6
    W. Tinnney and J. Walker, “Direct solutions of sparse network equations by optimally ordered triangular factorization”, pp 1801-1809, Proceedings of the IEEE, Volume 55, No. 11, 1967.
  • 7
    A. George and J. Liu, Computer Solutions of Large Sparse Positive Definite Systems, Prentice-Hall, Engle Wood Cliffs, New Jersey, 1981.
  • 8
    W. Tinney, V. Brandwajn, and S. Chan, “Sparse vector methods”, IEEE Transactions on Power Apparatus and Systems, PAS-104, No. 2, 1985.
  • 9
    J Bennett, “Triangular Factors of Modified Matrices”, Numerische Mathematik, Volume 7, pp. 217-221, 1965.
  • 10
    P. Gill, G. Golub, W. Murray, and M. Sanders, “Methods for Modifying Matrix Factorizations”, Mathematics of Computation, Volue 28, No. 126, pp. 505-535, 1974.
  • 11
    W. Hager, “Updating the Inverse of A Matrix”, SIAM Review, Volume 31, No. 2, pp. 221-239, 1989.
  • 12
    S. Chan and V. Brandwajn, “Partial matrix refactorization”, IEEE Transactions on Power Systems, Volume 1, No. 1, pp.193-200, 1986.
  • 13
    W. Tinney and C. Hart, “Power flow solution by Newton’s method”, IEEE Transactions on Power Apparatus and Systems, PAS-86, No. 6, 1972.
  • 14
    S. Eisenstat, M. Schultz, and A. Sherman, “Considerations in the design of software for sparse Gaussian elimination, in Sparse Matrix Computations, Edited by J. Bunch and D.Rose, Academic Press, New York and London, pp. 263-289, 1976.
  • 15
    D. Rose and R. Tarjan “Algorithmic aspects of vertex elimination”, Proceedings Seventh Annual ACM Symposium on Theory of Computing, pp. 245-254, 1975.
  • 16
    A. Gomez and L. Franquelo, “Node ordering algorithms for sparse vector method improvement”, IEEE Transactions on Power Systems, Volume 3, No. 1, pp. 73-79, 1988.
  • 17
    A. Gomez and L. Franquelo, “An efficient ordering algorithm to improve sparse vector methods”, IEEE Transactions on Power Systems, Volume 3, No. 4, pp. 1538–1544, 1988.
  • 18
    P. Lehman and B. Yao, “Efficient Locking for Concurrent Operations on B-Trees”, ACM Transaction on Database Systems, Volume 6, Number 4, pp. 650-669, December, 1981.
  • 19
    G. Gonnet, Handbook of Algorithms and Data Structures, Addison-Wesley, Reading, Massachusetts, 1984.