The equation y = Ux is solved by backward substitution as follows.
$$x_{i}=\frac{y_{i}-\displaystyle\sum_{j=i+1}^{n}u_{ij}x_{i}}{u_{ii}},\mbox{ where }i=n,n-1,\cdots,1$$ | (63) |
Algorithm 5 implements Equation 63.
for $i=n,\cdots,1$ |
$\alpha=y_{i}$ |
for $j=i+1,\cdots,n$ |
$\alpha=\alpha-u_{ij}x_{j}$ |
$x_{i}=\displaystyle\frac{\alpha}{u_{ii}}$ |
If U is unit upper triangular, the division by