MathML Browser Test (Presentation Markup)

This is an <u>HTML5</u> using <u>MathML</u> document. Click on a formula/equation to see the source code that generated it.

Safari -- 10/02/2012 -- iOS 6.0 w/native fonts

If you are having problems viewing this document, try viewing this older version (XHTML 1.1 plus MathML 2.0).

Formula	Image of TeX rendering (MiKTeX 2.9)	Image of MathML rendering (<u>Firefox</u> 4.0 with <u>STIX Fonts</u>)	MathML rendering (by this browser)
Axiom of power set	$\forall A \exists P \forall B [B \in P \iff \forall C (C \in B \Rightarrow C \in A)]$	$\forall A \; \exists P \; \forall B \; [B \in P \iff \forall C \; (C \in B \Rightarrow C \in A)]$	$\forall A \exists P \forall B [B \in P \forall C (C \in B = A)]$
De Morgan's	$\begin{array}{c} \mathbf{Logic:} \ \neg (p \land q) \iff (\neg p) \lor (\neg q) \\ \\ \mathbf{Boolean \ algebra:} \ \overline{\bigcup_{i=1}^{n} A_i} = \bigcap_{i=1}^{n} \overline{A_i} \end{array}$	Logic: $\neg(p \land q) \iff (\neg p) \lor (\neg q)$ Boolean algebra: $\bigcup_{i=1}^{n} \overline{A_i} = \bigcap_{i=1}^{n} \overline{A_i}$	Logic: $\neg (p \land q) (\neg p) \lor$ Boolean algebra: $\bigcup_{i=1}^{n} A_i = \bigcup_{i=1}^{n} A_i =$
Ouadratic Formula	$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$	$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$	$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$
Binomial Coefficient	$\mathbf{C}(n,k) = \mathbf{C}_k^n = {}_{n}\mathbf{C}_k = \binom{n}{k} = \frac{n!}{k!(n-k)!}$	$C(n, k) = C_k^n = {}_n C_k = {n \choose k} = \frac{n!}{k! (n-k)!}$	$C(n,k) = C_k^n = C k n = \binom{n}{k} = \frac{1}{k!}$
Sophomore's dream	$\int_0^1 x^x \mathrm{d}x = \sum_{n=1}^\infty (-1)^{n+1} n^{-n}$	$\int_0^1 x^x \mathrm{d}x = \sum_{n=1}^\infty (-1)^{n+1} n^{-n}$	$\int_{0}^{1} x^{x} \mathcal{O} x = \sum_{n=1}^{\infty} (-1)^{n+1} n^{n}$
Divergence	$\nabla \cdot \vec{v} = \frac{\partial v_x}{\partial x} + \frac{\partial v_y}{\partial y} + \frac{\partial v_z}{\partial z}$	$\nabla \cdot \overrightarrow{v} = \frac{\partial v_x}{\partial x} + \frac{\partial v_y}{\partial y} + \frac{\partial v_z}{\partial z}$	$\nabla \cdot \overrightarrow{v} = \frac{\partial v_x}{\partial x} + \frac{\partial v_y}{\partial y} + \frac{\partial v_z}{\partial z}$
Complex number	$c = \underbrace{a}_{\text{real}} + \underbrace{bi}_{\text{imaginary}}$	$c = \underbrace{\frac{a}{a} + \underbrace{b}_{\text{imaginary}}^{\text{total}}}_{\text{real}}$	complex number $c = a + b f$ real imaginary
Moore determinant	$M = \begin{bmatrix} \alpha_1 & \alpha_1^q & \cdots & \alpha_1^{q^{n-1}} \\ \alpha_2 & \alpha_2^q & \cdots & \alpha_2^{q^{n-1}} \\ \vdots & \vdots & \ddots & \vdots \\ \alpha_m & \alpha_m^q & \cdots & \alpha_m^{q^{n-1}} \end{bmatrix}$	$M = \begin{bmatrix} \alpha_1 & \alpha_1^q & \dots & \alpha_1^{q^{n-1}} \\ \alpha_2 & \alpha_2^q & \dots & \alpha_2^{q^{n-1}} \\ \vdots & \vdots & \ddots & \vdots \\ \alpha_m & \alpha_m^q & \dots & \alpha_m^{q^{n-1}} \end{bmatrix}$	$M = \begin{bmatrix} \alpha_1 & \alpha_1^q & \dots & \alpha_1^{q^{n-1}} \\ \alpha_2 & \alpha_2^q & \dots & \alpha_2^{q^{n-1}} \\ \vdots & \vdots & \ddots & \vdots \\ \alpha_m & \alpha_m^q & \dots & \alpha_m^{q^{n-1}} \end{bmatrix}$
Sphere volume	Spherical coordinates derivation of the volume of a sphere $\left(\frac{4}{3}\pi R^3\right)$. The formula S for a sphere of radius R in spherical coordinates is: $S = \{0 \le \phi \le 2\pi, \ 0 \le \theta \le \pi, \ 0 \le \rho \le R\}$ $\text{Volume} = \iiint_S \rho^2 \sin\theta \mathrm{d}\rho \mathrm{d}\theta \mathrm{d}\phi$ $= \iint_0^2 \mathrm{d}\phi \int_0^\pi \sin\theta \mathrm{d}\theta \int_0^R \rho^2 \mathrm{d}\rho$ $= \int_0^{2\pi} \left(-\cos\theta\right)_0^{\left[\pi\right]} \frac{1}{3}\rho^3\Big _0^R$ $= 2\pi \times 2 \times \frac{1}{3}R^3$ $= \frac{4}{3}\pi R^3$	Spherical coordinates derivation of the volume of a sphere $\left(\frac{4}{3}\pi R^3\right)$. The formula S for a sphere of radius R in spherical coordinates is: $S = \left(0 \le \phi \le 2\pi, \ 0 \le \theta \le \pi, \ 0 \le \rho \le R\right)$ Volume = $\iint_S \rho^2 \sin\theta \ d\rho \ d\theta \ d\phi$ = $\int_0^{2\pi} d\phi \int_0^{\pi} \sin\theta \ d\theta \int_0^R \rho^2 \ d\rho$ = $\int_0^{2\pi} \left(-\cos\theta\right) \left _0^{\pi} \frac{1}{3}\rho^3\right _0^R$ = $2\pi \times 2 \times \frac{1}{3}R^3$ = $\frac{4}{3}\pi R^3$	Spherical coordinates derivation of the volume of The formula S for a sphere of radius R in spherical $S = \{0 \le \varphi \le 2\pi, 0 \le \theta \le \pi, 0 \le \rho \le R\}$ Volume $= \iint_0^{2\pi} d\theta \int_0^{\pi} \sin \theta d\theta \int_0^{\theta} d\theta d\theta d\theta = \int_0^{2\pi} d\theta \int_0^{\pi} \sin \theta d\theta \int_0^{\theta} \rho^2 d\theta $
Schwinger- Dyson equation	$\left\langle \psi \left \mathcal{T} \left\{ \frac{\delta}{\delta \phi} F[\phi] \right\} \right \psi \right\rangle = -\mathrm{i} \left\langle \psi \left \mathcal{T} \left\{ F[\phi] \frac{\delta}{\delta \phi} S[\phi] \right\} \right \psi \right\rangle$	$\left\langle \psi \left \mathcal{F} \left\{ \frac{\delta}{\delta \phi} F[\phi] \right\} \middle \psi \right\rangle = -i \left\langle \psi \left \mathcal{F} \left\{ F[\phi] \frac{\delta}{\delta \phi} S[\phi] \right\} \middle \psi \right\rangle$	$\psi \left \left\{ \frac{\delta}{\delta \varphi} F[\varphi] \right\} \right \psi = -i \psi \left \left\{ F[\varphi] \right\} \right = -i \psi \left \left\{ F[\varphi] \right =$
Differentiable Manifold (tangent vector)	$ \gamma_1 \equiv \gamma_2 \iff \begin{cases} \gamma_1(0) = \gamma_2(0) = p, \text{ and} \\ \frac{d}{dt}\phi \circ \gamma_1(t)\big _{t=0} = \frac{d}{dt}\phi \circ \gamma_2(t)\big _{t=0} \end{cases} $	$ \gamma_1 \equiv \gamma_2 \iff \begin{cases} \gamma_1(0) = \gamma_2(0) = p, \text{ and} \\ \frac{d}{dt} \phi \circ \gamma_1(t) \Big _{t=0} = \frac{d}{dt} \phi \circ \gamma_2(t) \Big _{t=0} \end{cases} $	$\gamma_1 = \gamma_2 \begin{cases} \gamma_1 (0) = \gamma_2 (0) = p \text{ , and} \\ \left(\frac{dl}{dlt} q^{c_2} \gamma_1 \left(t\right) \mid_{t=0} = \left(\frac{dl}{dlt} q^{c_2}\right) \end{cases}$
Cichoń's Diagram	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

multiscript & greek alphabet	$\mathcal{S}_{\epsilon}^{\kappa} \mathfrak{S}_{\theta}^{\kappa} \prod_{i=1}^{\kappa} \mathfrak{S}_{\mu}^{\kappa} \mathfrak{D}_{\pi}^{\kappa}$ $\mathcal{S}_{\alpha}^{\kappa} \mathfrak{A}_{\delta}^{\gamma} \prod_{j=1}^{\kappa} \mathfrak{S}_{\omega}^{\kappa} \mathfrak{D}_{\pi}^{\kappa}$ $\mathcal{S}_{\phi}^{\kappa} \mathfrak{F}_{\omega}^{\psi}$	$egin{array}{l} egin{array}{l} egin{array}$	Π υτρο πονξ ωψφχ
nested root	$\sqrt{1+\sqrt[3]{2+\sqrt[5]{3+\sqrt[7]{4+\sqrt[1]{5+\sqrt[13]{6+\sqrt[17]{7+\sqrt[13]{A}}}}}}}e^{\pi}}=x^{^{'''}}$	$\frac{\sqrt{1+\sqrt[3]{2+\sqrt[3]{3+\sqrt[3]{4+\sqrt[3]{5+1\sqrt[3]{5+1\sqrt[3]{7+1\sqrt[3]{4}}}}}}}{e^{\pi}} = x^{m}$	$ \sqrt{1+\sqrt[3]{2+\sqrt[3]{3+\sqrt[3]{4+\sqrt[3]{5+\sqrt[3]{6+\sqrt[3]{7+}}}}}} e^{\pi} $
nested matrices	$\begin{pmatrix} \begin{pmatrix} a_1 & a_2 & a_3 & a_4 \\ a_5 & a_6 & a_7 & a_8 \\ 0 & \begin{pmatrix} c_1 & c_2 \\ c_3 & c_4 \end{pmatrix} \begin{pmatrix} b_1 \\ b_2 \\ b_3 \\ b_4 \end{pmatrix} \end{pmatrix}$	$\begin{pmatrix} \begin{pmatrix} a_1 & a_2 & a_3 & a_4 \\ a_5 & a_6 & a_7 & a_8 \end{pmatrix} \begin{pmatrix} b_1 \\ b_2 \\ 0 & \begin{pmatrix} c_1 & c_2 \\ c_3 & c_4 \end{pmatrix} \begin{pmatrix} b_3 \\ b_4 \\ b_4 \end{pmatrix} \end{pmatrix}$	$\begin{pmatrix} \begin{pmatrix} a_1a_2a_3a_4 \\ a_5a_6a_7a_8 \end{pmatrix} \begin{pmatrix} b_1 \\ b_2 \\ b_3 \\ b_4 \end{pmatrix}$ $0 \begin{pmatrix} c_1c_2 \\ c_3c_4 \end{pmatrix}$
font sizes	Huge, Large, normalsize, small	scriptlevel : -3 , -2 , -1 , 0 , 1	scriptlevel: (- 3, - 2, - 1

NOTES:

I hope this site can be used as a learning aid (tutorial by example) for mathematics in TeX/LaTeX and in coding MathML. A small sample of many different types of mathematical expressions and equations is shown.

All the examples are complete with the source code available. (Just click on the equation/formula.)

This web page was validated as:

- HTML5 at The W3C Markup Validation Service
- CSS level 3 at The W3C CSS Validation Service
- Section 508 accessibility requirements/guidelines at The HiSoftware Cynthia Says Portal

Lessons Learned Working on MathML with STIX Fonts on Firefox:

When using an mtable, the table cell (mtd) default vertical padding produces excessive spacing. Setting the top and bottom padding to zero "0" fixes this.

When using the mfenced tag, the "fences" have no spacing around them.

When using the vertical bar "|" (|) as a fence, adding a little spacing around it improves the readability of the result.

Firebug is an add-on to the Firefox browser. It is a great development tool that works well with MathML.

Bugs / Enhancements:

- Firefox: Bug 236963 (stretchy-in-cells) Stretchy characters don't stretch in mtable cells
- Firefox: Bug 403958 mroot and msqrt overlines not consistent with right hooks in radical glyphs
- Firefox: Bug 491384 MathML does not honor columnalign attribute of mtable element
- Firefox: Bug 491668 MathML elements rendered x & y position available but width and height undefined
- Firefox: Bug 667567 MathML is not displayed correctly inside link and underline tags

Useful Links: