
Matrix Algorithms

Timothy Vismor
January 30, 2015

Abstract

This document examines various aspects of matrix and linear algebra that are
relevant to the analysis of large scale networks. Particular emphasis is placed on
computational aspects of the topics of interest.

Copyright © 1990 - 2015 Timothy Vismor

CONTENTS CONTENTS

Contents
1 Matrix Nomenclature 6

2 Matrix Algebra 7
2.1 Matrix Equality . 8
2.2 Matrix Transposition . 8
2.3 Scalar Multiplication . 8
2.4 Matrix Addition . 9
2.5 Matrix Multiplication . 9
2.6 Inverse of a Matrix . 10
2.7 Rank of a Matrix . 11
2.8 Similarity Transformations . 12
2.9 Partitioning a Matrix . 12

3 Linear Systems 13
3.1 Solving Fully Determined Systems . 14
3.2 Solving Underdetermined Systems . 15
3.3 Solving Overdetermined Systems . 15
3.4 Computational Complexity of Linear Systems 16

4 LU Decomposition 17
4.1 Gaussian Elimination . 17
4.2 Doolittle’s LU Factorization . 18
4.3 Crout’s LU Factorization . 20
4.4 LDU Factorization . 22
4.5 Numerical Instability During Factorization 22
4.6 Pivoting Strategies for Numerical Stability 22
4.7 Diagonal Dominance and Pivoting . 24
4.8 Partial Pivoting . 25
4.9 Complete Pivoting . 25
4.10 Computational Complexity of Pivoting 26
4.11 Scaling Strategies . 26

5 Solving Triangular Systems 27
5.1 Forward Substitution . 27
5.2 Backward Substitution . 28
5.3 Outer Product Formulation . 28

6 Factor Update 29
6.1 LDU Factor Update . 29
6.2 LU Factor Update . 30
6.3 Additional Considerations . 32

2

CONTENTS CONTENTS

7 Symmetric Matrices 32
7.1 LDU Decomposition of Symmetric Matrices 32
7.2 LU Decomposition of Symmetric Matrices 33
7.3 Symmetric Matrix Data Structures . 34
7.4 Doolittle’s Method for Symmetric Matrices 35
7.5 Crout’s Method for Symmetric Matrices 36
7.6 Forward Substitution for Symmetric Systems 37

7.6.1 Forward Substitution Using Lower Triangular Factors 37
7.6.2 Forward Substitution Using Upper Triangular Factors 37

7.7 Backward Substitution for Symmetric Systems 38
7.7.1 Back Substitution Using Upper Triangular Factors 39
7.7.2 Back Substitution Using Lower Triangular Factors 39

7.8 Symmetric Factor Update . 40
7.8.1 Symmetric LDU Factor Update 40
7.8.2 Symmetric LU Factor Update . 40

8 Sparse Matrices 42
8.1 Sparse Matrix Methodology . 42
8.2 Abstract Data Types for Sparse Matrices 43

8.2.1 Sparse Matrix . 43
8.2.2 Adjacency List . 44
8.2.3 Reduced Graph . 45
8.2.4 List . 46
8.2.5 Mapping . 47
8.2.6 Vector . 47

8.3 Pivoting To Preserve Sparsity . 47
8.3.1 Markowitz Pivot Strategy . 47
8.3.2 Minimum Degree Pivot Strategy 48

8.4 Symbolic Factorization of Sparse Matrices 49
8.4.1 Symbolic Factorization with Minimum Degree Pivot 49
8.4.2 Computational Complexity of Symbolic Factorization 51

8.5 Creating PAPT from a Symbolic Factorization 51
8.6 Numeric Factorization of Sparse Matrices 52
8.7 Solving Sparse Linear Systems . 55

8.7.1 Permute the Constant Vector . 55
8.7.2 Sparse Forward Substitution . 56
8.7.3 Sparse Backward Substitution . 56
8.7.4 Permute the Solution Vector . 57

8.8 Sparse LU Factor Update . 57
8.8.1 Factorization Path of a Singleton Update 58
8.8.2 Revising LU after a Singleton Update 59

9 Implementation Notes 59

3

LIST OF TABLES LIST OF ALGORITHMS

9.1 Sparse Matrix Representation . 59
9.2 Database Cache Performance . 63

9.2.1 Sequential Matrix Element Retrieval 63
9.2.2 Arbitrary Matrix Element Retrieval 63
9.2.3 Arbitrary Matrix Element Update 63
9.2.4 Matrix Element Insertion . 64
9.2.5 Matrix Element Deletion . 64
9.2.6 Empirical Performance Measurements 64

9.3 Floating Point Performance . 66
9.4 Auxiliary Store . 67

List of Tables
1 Database Cache Benchmarks . 65
2 Floating Point Benchmarks . 66
3 Math Library Benchmarks . 67

List of Figures
1 Computational Sequence of Doolittle’s Method 19
2 Computational Sequence of Crout’s Method 21
3 Computational Sequence of Tinney’s LDU Decomposition 23
4 Matrix Tuple Structure . 61
5 Sparse Matrix Representation . 62

List of Algorithms
1 LU Decomposition . 18
2 Doolittle’s LU Decompostion . 19
3 Crout’s LU Decomposition . 21
4 Forward Substitution . 27
5 Backward Substitution . 28
6 Forward Substitution - Outer Product . 28
7 Back Substitution - Outer Product . 29
8 LDU Factor Update . 30
9 LU Factor Update . 31
10 Doolittle’s Method - Symmetric Implementation 35
11 Doolittle’s Method - Symmetric, Array Based 35
12 Crout’s Method - Symmetric Implementation 36
13 Crout’s Method - Symmetric, Array Based 36

4

LIST OF ALGORITHMS LIST OF ALGORITHMS

14 Symmetric Forward Substitution via Upper Triangular Factors 37
15 Symmetric Forward Substitution using U with Array Storage 38
16 Symmetric Forward Substitution using U, Outer Product 38
17 Symmetric Forward Substitution using U, Outer Product, Array 38
18 Symmetric Back Substitution using Lower Triangular Factors 39
19 Symmetric Backward Substitution using L with Array Storage 40
20 Symmetric LDU Factor Update . 41
21 Symmetric LU Factor Update . 41
22 Symbolic Factorization of a Sparse Matrix † 50
23 Construct PAPT of a Sparse Matrix † . 52
24 Construct PAPT of a Sparse Symmetric Matrix † 53
25 LU Decomposition of a Sparse Matrix by Doolittle’s Method † 54
26 LU Decomposition of Sparse Symmetric Matrix by Doolittle’s Method † 54
27 Permute b to order P . 55
28 Sparse Forward Substitution . 56
29 Symmetric Sparse Forward Substitution 56
30 Sparse Back Substitution . 57
31 Permute x to order Q . 57
32 Factorization Path . 58
33 Symmetric Factorization Path . 58
34 Structurally Symmetric Sparse LU Factor Update 60
35 Symmetric Sparse LU Factor Update . 61

5

1 MATRIX NOMENCLATURE

1 Matrix Nomenclature

Since any finite dimensional linear operator can be represented as a matrix, matrix al-
gebra and linear algebra are two sides of the same coin. Properties of linear systems are
gleaned from either discipline. The following sections draw on both of these perspec-
tives to examine the basic concepts, numerical techniques, and practical constraints of
computational linear algebra.
Assuming the symbols xi represent variables and the symbols aij and biare complex con-
stants, the following is a system of m linear equations in n unknowns.

𝑎11𝑥1 + 𝑎12𝑥2 + ⋯ + 𝑎1𝑛𝑥𝑛 = 𝑏1
𝑎21𝑥1 + 𝑎22𝑥2 + ⋯ + 𝑎2𝑛𝑥𝑛 = 𝑏2 (1)

⋯
𝑎𝑚1𝑥1 + 𝑎𝑚2𝑥2 + ⋯ + 𝑎𝑚𝑛𝑥𝑛 = 𝑏𝑚

This system of equations is expressed in matrix notation as

𝐀𝐱 = 𝐛 (2)

where

𝐀 =
⎛
⎜
⎜
⎜
⎝

𝑎11 𝑎12 ⋯ 𝑎1𝑛
𝑎21 𝑎22 ⋯ 𝑎2𝑛
⋯ ⋯ ⋯ ⋯
𝑎𝑚1 𝑎𝑚2 ⋯ 𝑎𝑚𝑛

⎞
⎟
⎟
⎟
⎠

𝐱 =
⎛
⎜
⎜
⎜
⎝

𝑥1
𝑥2
⋯
𝑥𝑛

⎞
⎟
⎟
⎟
⎠

𝐛 =
⎛
⎜
⎜
⎜
⎝

𝑏1
𝑏2
⋯
𝑏𝑛

⎞
⎟
⎟
⎟
⎠

(3)

A rectangular array of coefficients such as a A is referred to as a matrix. The matrix A
has m rows and n columns. As such, it is called an m × n matrix. A square matrix has an
equal number of rows and columns, e.g. an n × n matrix. A vector is a matrix with just
one row or just one column. A 1 × n matrix is a row vector. An m × 1 matrix, such as x or
b in Equation 2, is called a column vector.
The elements of a matrix aii whose row and column index are equal are referred to
as its diagonal. The elements of a matrix above the diagonal (aij, where i < j) are its
superdiagonal entries. The elements of a matrix below the diagonal (aij, where i > j)
are its subdiagonal entries. A matrix whose subdiagonal entries are zero is called upper
triangular. An upper triangular matrix with ones along the diagonal is called unit upper
triangular. The following 3 × 3 matrix is unit upper triangular.

⎛
⎜
⎜
⎝

1 𝑎12 𝑎13
0 1 𝑎23
0 0 1

⎞
⎟
⎟
⎠

Similarly, a matrix whose superdiagonal entries are zero is called lower triangular. A
lower triangular matrix with ones along the diagonal is called unit lower triangular. The

6

2 MATRIX ALGEBRA

following 3 × 3 matrix is lower triangular.

⎛
⎜
⎜
⎝

𝑎11 0 0
𝑎21 𝑎22 0
𝑎31 𝑎32 𝑎33

⎞
⎟
⎟
⎠

A matrix whose superdiagonal and subdiagonal entries are zero is a diagonal matrix, e.g.

⎛
⎜
⎜
⎝

𝑎11 0 0
0 𝑎22 0
0 0 𝑎33

⎞
⎟
⎟
⎠

A square matrix whose subdiagonal elements are the mirror image of its superdiagonal
elements is referred to as a symmetric matrix. More formally, a symmetric matrix A has
the property aij = aji. A trivial example of a symmetric matrix is a diagonal matrix. The
general case of a 3 × 3 symmetric matrix follows.

⎛
⎜
⎜
⎝

𝑎11 𝑎12 𝑎13
𝑎12 𝑎22 𝑎23
𝑎13 𝑎23 𝑎33

⎞
⎟
⎟
⎠

A matrix whose elements are all zero is called the zero matrix or the null matrix.

2 Matrix Algebra

The set of square matrices of dimension n form an algebraic entity known as a ring. By
definition, a ring consists of a set R and two operators (addition + and multiplication ×)
such that

• R is an Abelian group with respect to addition.
• R is a semigroup with respect to multiplication.
• R is left distributive, i.e. a × (b + c) = (a × b) + (a × c).
• R is right distributive, i.e.(b + c) × a = (b × a) + (c × a).

An Abelian group consists of a set G and a binary operator such that
• G is associative with respect to the operator.
• G has an identity element with respect to the operator.
• Each element of G has an inverse with respect to the operator.
• G is commutative with respect to the operator.

A semigroup consists of a set G and a binary operator such that G is associative with
respect to the operator.
For non-square matrices, even these limited properties are not generally true. The fol-
lowing sections examine the algebraic properties of matrices in further detail.

7

2.1 Matrix Equality 2 MATRIX ALGEBRA

2.1 Matrix Equality

Two m × n matrices A and B are equal if their corresponding elements are equal.

𝐀 = 𝐁 (4)

implies

𝑎𝑖𝑗 = 𝑏𝑖𝑗 , where 1 ≤ 𝑖 ≤ 𝑚 and 1 ≤ 𝑗 ≤ 𝑛 (5)

The notion of matrix equality is undefined unless the operands have the same dimen-
sions.

2.2 Matrix Transposition

The transpose of an m × n matrix A is an n × m matrix denoted by AT. The columns of
AT are the rows of A and the rows of AT are the columns of A.

𝑎𝑇
𝑖𝑗 = 𝑎𝑗𝑖, where 1 ≤ 𝑖 ≤ 𝑚 and 1 ≤ 𝑗 ≤ 𝑛 (6)

A symmetric matrix is its own transpose, i.e. if A is symmetric

𝐀 = 𝐀𝐓

The transpose of the 2 × 3 matrix

(
𝑎11 𝑎12 𝑎13
𝑎21 𝑎22 𝑎23)

is the 3 × 2 matrix

⎛
⎜
⎜
⎝

𝑎11 𝑎21
𝑎12 𝑎22
𝑎13 𝑎23

⎞
⎟
⎟
⎠

2.3 Scalar Multiplication

The product of an m × n matrix A and a scalar 𝛼 is an m × n matrix whose elements are
the arithmetic products of 𝛼 and the elements of A.

𝐂 = 𝛼 ⋅ 𝐀 (7)

implies

𝑐𝑖𝑗 = 𝛼 ⋅ 𝑎𝑖𝑗 , where 1 ≤ 𝑖 ≤ 𝑚 and 1 ≤ 𝑗 ≤ 𝑛 (8)

8

2.4 Matrix Addition 2 MATRIX ALGEBRA

2.4 Matrix Addition

The sum of m × n matrices A and B is an m × n matrix C which is the element by element
sum of the addends.

𝐂 = 𝐀 + 𝐁 (9)

implies

𝑐𝑖𝑗 = 𝑎𝑖𝑗 + 𝑏𝑖𝑗 , where 1 ≤ 𝑖 ≤ 𝑚 and 1 ≤ 𝑗 ≤ 𝑛 (10)

Matrix addition is undefined unless the addends have the same dimensions. Matrix
addition is commutative.

𝐀 + 𝐁 = 𝐁 + 𝐀

Matrix addition is also associative.

(𝐀 + 𝐁) + 𝐂 = 𝐀 + (𝐁 + 𝐂)

The additive identity is the zero matrix. The additive inverse of matrix A is denoted by
-A and consists of the element by element negation of a A, i.e. it’s the matrix formed
when a A is multiplied by the scalar -1.

−𝐀 = −1 ⋅ 𝐀 (11)

2.5 Matrix Multiplication

The product of an m × p matrix A and a p × n matrix B is an m × n matrix C where each
element cij is the dot product of row i of A and column j of B.

𝐂 = 𝐀𝐁 (12)

implies

𝑐𝑖𝑗 =
𝑝

∑
𝑘=1

(𝑎𝑖𝑘 + 𝑏𝑘𝑗), where 1 ≤ 𝑖 ≤ 𝑚 and 1 ≤ 𝑗 ≤ 𝑛 (13)

The product of matrices A and B is undefined unless the number of rows in A is equal
to the number of columns in B. In this case, the matrices are conformable for multipli-
cation.
In general, matrix multiplication is not commutative.

𝐀𝐁 ≠ 𝐁𝐀

9

2.6 Inverse of a Matrix 2 MATRIX ALGEBRA

As a consequence, the following terminology is sometimes used. Considering the matrix
product

𝐀𝐁

The left multiplicand A is said to premultiply the matrix B. The right multiplicand B
is said to postmultiply the matrix A.
Matrix multiplication distributes over matrix addition

𝐀(𝐁 + 𝐂) = (𝐀𝐁) + (𝐀𝐂)

and

(𝐁 + 𝐂)𝐀 = (𝐁𝐀) + (𝐂𝐀)

if A, B, and C are conformable for the indicated operations. With the same caveat,
matrix multiplication is associative.

𝐀 (𝐁𝐂) = (𝐀𝐁) 𝐂

The transpose of a matrix product is the product of the factors in reverse order, i.e.

(𝐀𝐁𝐂)𝐓 = 𝐂𝐓𝐁𝐓𝐀𝐓 (14)

The set of square matrices has a multiplicative identity which is denoted by I. The
identity is a diagonal matrix with ones along the diagonal

𝑎𝑖𝑗 =
{

1 where 𝑖 = 𝑗
0 where 𝑖 ≠ 𝑗

(15)

The 3 × 3 multiplicative identity is

𝐈 =
⎛
⎜
⎜
⎝

1 0 0
0 1 0
0 0 1

⎞
⎟
⎟
⎠

2.6 Inverse of a Matrix

If A and B are square n × n matrices such that

𝐀𝐁 = 𝐈 (16)

then B is a right inverse of A. Similarly, if C is an n × n matrix such that

𝐂𝐀 = 𝐈 (17)

10

2.7 Rank of a Matrix 2 MATRIX ALGEBRA

then C is a left inverse of A. When both Equation 16 and Equation 17 hold

𝐀𝐁 = 𝐂𝐀 = 𝐈 (18)

then B = C and B is the two-sided inverse of A.
The two-sided inverse of A will be referred to as its multiplicative inverse or simply its
inverse. If the inverse of A exists, it is unique and denoted by A-1. A-1 exists if and only
if A is square and nonsingular. A square n ×n matrix is singular when its rank is less than
n, i.e. two or more of its columns (or rows) are linearly dependent. The rank of a matrix
is examined more closely in Section 2.7 of this document.
A few additional facts about inverses. If A is invertible, so is A-1 and

(𝐀−𝟏)−𝟏 = 𝐀 (19)

If A and B are invertible, so is AB and

(𝐀𝐁)−𝟏 = 𝐁−𝟏𝐀−𝟏 (20)

Extending the previous example

(𝐀𝐁𝐂)−𝟏 = 𝐂−𝟏𝐁−𝟏𝐀−𝟏 (21)

If A is invertible, then

(𝐀−𝟏)𝐓 = (𝐀𝐓)−𝟏 (22)

The conditional or generalized inverse which may be defined for any matrix is beyond
the scope of the current discussion.

2.7 Rank of a Matrix

The rank of an n × n matrix A is the maximum number of linearly independent columns
in A. Column vectors of of A, denoted ai, are linearly independent if the only set of
scalars 𝛼𝑖 such that

𝛼1𝐚𝟏 + 𝛼2𝐚𝟐 + ... + 𝛼𝑛𝐚𝐧 = 𝟎 (23)

is the set

𝛼1 = 𝛼2 = ... = 𝛼𝑛 = 0

For a more concrete example, consider the following matrix.

𝐀 =
⎛
⎜
⎜
⎝

0 1 1 2
1 2 3 4
2 0 2 0

⎞
⎟
⎟
⎠

11

2.8 Similarity Transformations 2 MATRIX ALGEBRA

The rank of A is two, since its third and fourth columns are linear combinations of its
first two columns, i.e.

𝐚𝟑 = 𝐚𝟏 + 𝐚𝟐

𝐚𝟒 = 2𝐚𝟐

If A is an n × n matrix, it can be shown

rank (𝐀) ≤ min(𝑚, 𝑛) (24)

Furthermore,

rank (𝐀𝐁) ≤ min(rank (𝐀) , rank (𝐁)) (25)

and

rank (𝐀𝐀𝐓) = rank (𝐀𝐓𝐀) = rank (𝐀) (26)

2.8 Similarity Transformations

If A and B are n × n matrices, A is similar to B if there exists an invertible matrix P such
that

𝐁 = 𝐏𝐀𝐏−𝟏 (27)

Every matrix is similar to itself with P = I. The only similarity transformation that holds
for the identity matrix or the zero matrix is this trivial one.
Similarity is a symmetric relation. If A∼B, then B∼A. Therefore, premultiplying Equa-
tion 27 by P-1 and postmultiplying it by P yields

𝐀 = 𝐏−𝟏𝐁𝐏 (28)

Similarity is also a transitive relation. If A∼B and B∼C, then A∼C.
Since similarity is reflexive, symmetric, and transitive, it is an equivalence relation. A
common example of a similarity transformation in linear algebra is changing the basis
of a vector space.

2.9 Partitioning a Matrix

Matrices may be divided into subsections for computational purposes. Consider the n
× n matrix A which is partitioned along the following lines.

𝐀 = (
𝐀𝟏𝟏 𝐀𝟏𝟐
𝐀𝟐𝟏 𝐀𝟐𝟐) (29)

12

3 LINEAR SYSTEMS

If k × k matrix A11 and p × p matrix A22 are square matrices, then A12 has dimensions k ×
p and A21 has dimensions p × k.
The transpose of A is

𝐀𝐓 = (
𝐀𝐓

𝟏𝟏 𝐀𝐓
𝟏𝟐

𝐀𝐓
𝟐𝟏 𝐀𝐓

𝟐𝟐) (30)

If A is invertible, its inverse is

𝐀−𝟏 = (
𝐁𝟏𝟏 𝐁𝟏𝟐
𝐁𝟐𝟏 𝐁𝟐𝟐) (31)

where

𝐁𝟏𝟏 = (𝐀𝟏𝟏 − 𝐀𝟏𝟐𝐀−𝟏
𝟐𝟐 𝐀𝟐𝟏)−𝟏

𝐁𝟏𝟐 = −𝐀−𝟏
𝟏𝟏 𝐀𝟏𝟐𝐁𝟐𝟐 (32)

𝐁𝟐𝟏 = −𝐀−𝟏
𝟐𝟐 𝐀𝟐𝟏𝐁𝟏𝟏

𝐁𝟐𝟐 = (𝐀𝟐𝟐 − 𝐀𝟐𝟏𝐀−𝟏
𝟏𝟏 𝐀𝟏𝟐)−𝟏

Alternately,

𝐁𝟏𝟐 = −𝐁𝟏𝟏𝐀𝟏𝟐𝐀−𝟏
𝟐𝟐 (33)

𝐁𝟐𝟐 = 𝐀−𝟏
𝟐𝟐 − 𝐀−𝟏

𝟐𝟐 𝐀𝟐𝟏𝐁𝟏𝟐

The product of A and another n × n matrix B which is partitioned along the the same
lines is an identically partitioned matrix C such that

𝐂𝟏𝟏 = 𝐀𝟏𝟏𝐁𝟏𝟏 + 𝐀𝟏𝟐𝐁𝟐𝟏
𝐂𝟏𝟐 = 𝐀𝟏𝟏𝐁𝟏𝟐 + 𝐀𝟏𝟐𝐁𝟐𝟐 (34)
𝐂𝟐𝟏 = 𝐀𝟐𝟏𝐁𝟏𝟏 + 𝐀𝟐𝟐𝐁𝟐𝟏
𝐂𝟐𝟐 = 𝐀𝟐𝟏𝐁𝟏𝟐 + 𝐀𝟐𝟐𝐁𝟐𝟐

The current discussion has focused on the principal partition of a square matrix; how-
ever, all aspects of the discussion (except the inversion rules) are more general – pro-
vided the dimensions of the partitions are conformable for the indicated operations.

3 Linear Systems

Consider the m × n system of linear equations

𝐀𝐱 = 𝐛 (35)

If m = n and A is not singular, Equation 35 possesses a unique solution and is referred to
as a fully determined system of equations. When m > n (or m = n and A is singular), Equa-
tion 35 is an underdetermined system of equations. Otherwise, m < n and Equation 35 is
overdetermined system of equations.

13

3.1 Solving Fully Determined Systems 3 LINEAR SYSTEMS

3.1 Solving Fully Determined Systems

A m × n system of linear equations where m = n and A is not singular, possesses a unique
solution. A solution for the unknown vector x is obtained by premultiplying Equation 35
by A-1, i.e.

(𝐀−𝟏𝐀) 𝐱 = 𝐀−𝟏𝐛

or simply

𝐱 = 𝐀−𝟏𝐛 (36)

since A-1A is by definition the multiplicative identity.
The solution algorithm suggested by Equation 36 is

1. Invert matrix A.
2. Premultiply the vector b by A-1.

This procedure is computationally inefficient and rarely used in practice. Most direct
solutions to systems of linear equations are derived from a procedure known as Gaus-
sian elimination, which is a formalization of the ad hoc techniques used to solve linear
equations in high school algebra. The basic algorithm is

1. Transform the system of equations into a triangular form.
2. Solve the triangular set of equations through a series of variable substitutions.

A major drawback to this procedure is that both sides (A and b) of Equation 35 are mod-
ified as the system is forced into triangular form. This requires repetition of the entire
procedure if you want to solve Equation 35 with a new b vector. A technique known
as LU decomposition overcomes this problem by systematically capturing the interme-
diate states of A as the transformation to triangular form progresses. This effectively
decouples the operations on A from those on b, permitting solutions to Equation 35 for
many b vectors based on a single triangular factorization.
More specifically, LU decomposition produces a lower triangular matrix L and an upper
triangular matrix U such that

𝐋𝐔 = 𝐀 (37)

Substituting Equation 37 into Equation 35 yields

(𝐋𝐔) 𝐱 = 𝐛 (38)

Associating the factors in Equation 38 yields

𝐋 (𝐔𝐱) = 𝐛 (39)

Recalling that efficient procedures exist for solving triangular systems (i.e. forward sub-
stitution for lower triangular systems and backward substitution for upper triangular

14

3.2 Solving Underdetermined Systems 3 LINEAR SYSTEMS

systems), Equation 39 suggests an algorithm for solving Equation 35. Define a vector y
such that

𝐲 = 𝐔𝐱 (40)

Substituting Equation 40 into Equation 39 yields

𝐋𝐲 = 𝐛 (41)

Since b is known and L is lower triangular, Equation 41 can be solved for y by forward
substitution. Once y is known, Equation 40 can be solved for x by back substitution.
In summary, the preferred algorithm for solving for a nonsingular n × n system of linear
equations is

1. Compute an LU decomposition of A.
2. Solve Equation 41 for y by forward substitution.
3. Solve Equation 40 for x by back substitution.

3.2 Solving Underdetermined Systems

A m × n system of linear equations where m > n (or m = n and A is singular) is underdeter-
mined. There are fewer equations than there are unknowns. Underdetermined systems
have q linearly independent families of solutions, where

𝑞 = 𝑛 − 𝑟

and

𝑟 = rank (𝐀)

The value q is referred to as the nullity of matrix A. The q linearly dependent equations
in A are the null space of A.
”Solving” an underdetermined set of equations usually boils down to solving a fully de-
termined r × r system (known as the range of A) and adding this solution to any linear
combination of the other q vectors of A. A numerical procedure that solves the crux
of this problem is known as singular value decomposition (or SVD). A singular value
decomposition constructs a set of orthonormal bases for the null space and range of A.

3.3 Solving Overdetermined Systems

A m × n system of linear equations with m < n is overdetermined. There are more equa-
tions than there are unknowns. ”Solving” this equation is the process of reducing the

15

3.4 Computational Complexity of Linear Systems 3 LINEAR SYSTEMS

system to an m × m problem then solving the reduced set of equations. A common tech-
nique for constructing a reduced set of equations is known as the least squares solution
to the equations. The least squares equations are derived by premultiplying Equation 35
by AT, i.e.

(𝐀𝐓𝐀) 𝐱 = 𝐀𝐓𝐛 (42)

Often Equation 42 is referred to as the normal equations of the linear least squares
problem. The least squares terminology refers to the fact that the solution to Equa-
tion 42 minimizes the sum of the squares of the differences between the left and right
sides of Equation 35.

3.4 Computational Complexity of Linear Systems

As was mentioned in Section 3.1, the decomposition algorithm for solving linear equa-
tions is motivated by the computational inefficiency of matrix inversion. Inverting a
dense matrix A requires

2𝑛3 + 𝑂 (𝑛2)
floating point operations. Computing the LU decomposition of A requires

2
3𝑛3 + 1

2𝑛2 + 1
6𝑛

or
2
3𝑛3 + 𝑂 (𝑛2)

floating point operations. Computing x from the factorization requires

2𝑛2 + 𝑛
or

2𝑛2 + 𝑂 (𝑛)
floating point operations (which is equivalent to computing the product A-1b). There-
fore, solving a linear system of equations by matrix inversion requires approximately
three times the amount of work as a solution via LU decomposition.
When A is a sparse matrix, the computational discrepancy between the two methods
becomes even more overwhelming. The reason is straightforward. In general,

• Inversion destroys the sparsity of A, whereas
• LU decomposition preserves the sparsity of A.

Much work can be avoided by taking advantage of the sparsity of a matrix and its tri-
angular factors. Algorithms for solving sparse systems of equations are are described in
detail in Section 8 of this document.

16

4 LU DECOMPOSITION

4 LU Decomposition

There are many algorithms for computing the LU decomposition of the matrix A. All
algorithms derive a matrix L and a matrix U that satisfy Equation 37. Most algorithms
also permit L and U to occupy the same amount of space as A. This implies that either
L or U is computed as a unit triangular matrix so that explicit storage is not required
for its diagonal (which is all ones).
There are two basic approaches to arriving at an LU decomposition:

• Simulate Gaussian elimination by using row operations to zero elements in A until
an upper triangular matrix exists. Save the multipliers produced at each stage of
the elimination procedure as L.

• Use the definition of matrix multiplication to solve Equation 37 directly for the
elements of L and U.

Discussions of the subject by Fox (1964), Golub and Van Loan (1983), Duff, Erisman,
and Reid (1986), and Press et al. (1988) are complementary in many respects. Taken as
a group, these works provide a good sense of perspective concerning the problem.

4.1 Gaussian Elimination

Approaches to LU decomposition which systematically capture the intermediate re-
sults of Gaussian elimination often differ in the order in which A is forced into upper
triangular form. The most common alternatives are to eliminate the subdiagonal parts
of A either one row at a time or one column at a time. The calculations required to
zero a complete row or a complete column are referred to as one stage of the elimination
process.
The effects of the kth stage of Gaussian elimination on the A matrix are summarized by
the following equation.

𝑎(𝑘+1)
𝑖𝑗 = 𝑎(𝑘)

𝑖𝑗 −
(

𝑎(𝑘)
𝑖𝑘

𝑎(𝑘)
𝑘𝑘)

𝑎(𝑘)
𝑖𝑗 , where 𝑖, 𝑗 > 𝑘 (43)

The notation a(𝑘)
𝑖𝑗 means the value of aij produced during the kth stage of the elimination

procedure. In Equation 43, the term 𝑎(𝑘)
𝑖𝑘

𝑎(𝑘)
𝑘𝑘

(sometimes referred to as a multiplier) captures
the crux of the elimination process. It describes the effect of eliminating element aik
on the other entries in row i during the kth stage of the elimination. In fact, these
multipliers are the elements of the lower triangular matrix L, i.e.

𝑙𝑖𝑘 =
𝑎(𝑘)

𝑖𝑘

𝑎(𝑘)
𝑘𝑘

(44)

17

4.2 Doolittle’s LU Factorization 4 LU DECOMPOSITION

Algorithm 1: LU Decomposition
for 𝑘 = 1, ⋯ , min(𝑚 − 1, 𝑛)

for 𝑗 = 𝑘 + 1, ⋯ , 𝑛
𝑤𝑗 = 𝑎𝑘𝑗

for 𝑖 = 𝑘 + 1, ⋯ , 𝑚
𝛼 = 𝑎𝑖𝑘

𝑎𝑘𝑘
𝑎𝑖𝑘 = 𝛼
for 𝑗 = 𝑘 + 1, ⋯ , 𝑛

𝑎𝑖𝑗 = 𝑎𝑖𝑗 − 𝛼𝑤𝑗

Algorithm 1 implements Equation 43 and Equation 44 and computes the LU decom-
position of an m × n matrix A. It is based on Algorithm 4.2–1 of Golub and Van Loan
(1983).
The algorithm overwrites aij with lij when i < j. Otherwise, aij is overwritten by uij. The
algorithm creates a matrix U that is upper triangular and a matrix L that is unit lower
triangular. Note that a working vector w of length n is required by the algorithm.

4.2 Doolittle’s LU Factorization

An LU decomposition of A may be obtained by applying the definition of matrix multi-
plication to the equation A = LU. If L is unit lower triangular and U is upper triangular,
then

𝑎𝑖𝑗 =
min(𝑖,𝑗)

∑
𝑝=1

𝑙𝑖𝑝𝑢𝑝𝑗 , where 1 ≤ 𝑖, 𝑗 ≤ 𝑛 (45)

Rearranging the terms of Equation 45 yields

𝑙𝑖𝑗 =

𝑎𝑖𝑗 −
𝑗−1

∑
𝑝=1

𝑙𝑖𝑝𝑢𝑝𝑗

𝑢𝑗𝑗
, where 𝑖 > 𝑗 (46)

and

𝑢𝑖𝑗 = 𝑎𝑖𝑗 −
𝑖−1

∑
𝑝=1

𝑙𝑖𝑝𝑢𝑝𝑗 , where 1 ≤ 𝑗 (47)

Jointly Equation 46 and Equation 47 are referred to as Doolittle’s method of computing
the LU decomposition of A. Algorithm 2 implements Doolittle’s method. Calculations

18

4.2 Doolittle’s LU Factorization 4 LU DECOMPOSITION

Algorithm 2: Doolittle’s LU Decompostion
for 𝑖 = 1, ⋯ , 𝑛

for 𝑗 = 1, ⋯ , 𝑖 − 1
𝛼 = 𝑎𝑖𝑗
for 𝑝 = 1, ⋯ , 𝑗 − 1

𝛼 = 𝛼 − 𝑎𝑖𝑝𝑎𝑝𝑗
𝑎𝑖𝑗 = 𝛼

𝑎𝑗𝑗
for 𝑗 = 𝑖, ⋯ , 𝑛

𝛼 = 𝑎𝑖𝑗
for 𝑝 = 1, ⋯ , 𝑖 − 1

𝛼 = 𝛼 − 𝑎𝑖𝑝𝑎𝑝𝑗
𝑎𝑖𝑗 = 𝛼

are sequenced to compute one row of L followed by the corresponding row of U until A
is exhausted. You will observe that the procedure overwrites the subdiagonal portions
of A with L and the upper triangular portions of A with U.
Figure 1 depicts the computational sequence associated with Doolittle’s method.

Figure 1: Computational Sequence of Doolittle’s Method

ui(i+1) uin...uiil(i-1)ili1 ...

Subsequent

Iteration i

Prior Iterations

Iterations

Two loops in the Doolittle algorithm are of the form

𝛼 = 𝛼 − 𝑎𝑖𝑝𝑎𝑝𝑗 (48)

These loops determine an element of the factorization lij or uij by computing the dot
product of a partial column vector in U and partial row vector in L. As such, the loops

19

4.3 Crout’s LU Factorization 4 LU DECOMPOSITION

perform an inner product accumulation. These computations have a numerical advan-
tage over the gradual accumulation of lij or uij during each stage of Gaussian elimination
(sometimes referred to as a partial sums accumulation). This advantage is based on the
fact the product of two single precision floating point numbers is always computed with
double precision arithmetic (at least in the C programming language). Because of this,
the product aipapj suffers no loss of precision. If the product is accumulated in a double
precision variable 𝛼, there is no loss of precision during the entire inner product calcu-
lation. Therefore, one double precision variable can preserve the numerical integrity of
the inner product.
Recalling the partial sum accumulation loop of the elimination-based procedure,

𝑎𝑖𝑗 = 𝑎𝑖𝑗 − 𝛼𝑤𝑗

You will observe that truncation to single precision must occur each time a𝑖𝑗 is updated
unless both A and w are stored in double precision arrays.
The derivation of Equation 46 and Equation 47 is discussed more fully in Conte and
Boor (1972).

4.3 Crout’s LU Factorization

An equivalent LU decomposition of A = LU may be obtained by assuming that L is
lower triangular and U is unit upper triangular. This factorization scheme is referred to
as Crout’s method. The defining equations for Crout’s method are

𝑙𝑖𝑗 = 𝑎𝑖𝑗 −
𝑖−1

∑
𝑝=1

𝑙𝑖𝑝𝑢𝑝𝑗 , where 𝑖 ≥ 𝑗 (49)

and

𝑢𝑖𝑗 =

𝑎𝑖𝑗 −
𝑖−1

∑
𝑝=1

𝑙𝑖𝑝𝑢𝑝𝑗

𝑙𝑖𝑖
, where 𝑖 < 𝑗 (50)

Algorithm 3 implements Crout’s method. Calculations are sequenced to compute one
column of L followed by the corresponding row of U until A is exhausted.
Figure 2 depicts the computational sequence associated with Crout’s method.
You should observe that Crout’s method, like Doolittle’s, exhibits inner product accu-
mulation.
A good comparison of the various compact factorization schemes is found in Duff, Eris-
man, and Reid (1986).

20

4.3 Crout’s LU Factorization 4 LU DECOMPOSITION

Algorithm 3: Crout’s LU Decomposition
for 𝑗 = 1, ⋯ , 𝑛

for 𝑖 = 𝑗, ⋯ , 𝑛
𝛼 = 𝑎𝑖𝑗
for 𝑝 = 1, ⋯ , 𝑗 − 1

𝛼 = 𝛼 − 𝑎𝑖𝑝𝑎𝑝𝑗
𝑎𝑖𝑗 = 𝛼

for 𝑗 = 𝑗 + 1, ⋯ , 𝑛
𝛼 = 𝑎𝑖𝑗
for 𝑝 = 1, ⋯ , 𝑖 − 1

𝛼 = 𝛼 − 𝑎𝑗𝑝𝑎𝑝𝑖
𝑎𝑗𝑖 = 𝛼

𝑎𝑗𝑗

Figure 2: Computational Sequence of Crout’s Method

uj(j+1) uj(j+2) ujnuj(n-1)...ljj

l(j+1)j

l(j+2)j

lnj

l(n-1)j

...

Subsequent
Iterations

Iteration j

P
ri

or
 I

te
ra

ti
on

s

Prior Iterations

21

4.4 LDU Factorization 4 LU DECOMPOSITION

4.4 LDU Factorization

Some factorization algorithms, referred to as LDU decompositions, derive three ma-
trices L, D, and U from A such that

𝐋𝐃𝐔 = 𝐀 (51)

where L is unit upper triangular, D is diagonal, and U is unit lower triangular. It should
be obvious that the storage requirements of LDU decompositions and LU decomposi-
tions are the same.
A procedure proposed by Tinnney and Walker (1967) provides a concrete example of an
LDU decomposition that is based on Gaussian elimination. One row of the subdiagonal
portion of A is eliminated at each stage of the computation. Tinney refers to the LDU
decomposition as a “table of factors”. He constructs the factorization as follows:

• The elements of the unit upper triangular matrix U are uij = 𝑎(𝑖)
𝑖𝑗 , where i < j.

• The elements of the diagonal matrix D are dii = 1
𝑎(𝑖−𝑙)

𝑖𝑖
.

• The elements of the unit lower triangular matrix L are lij = 𝑎(𝑗−1)
𝑖𝑗 , where i < j.

Figure 3 depicts the first two stages of Tinney’s factorization scheme.

4.5 Numerical Instability During Factorization

Examining Equation 43 and Equation 44, you will observe that LU decomposition will
fail when value the 𝑎(𝑘)

𝑘𝑘 (called the pivot element) is zero. In many applications, the
possibility of a zero pivot is quite real and constitutes a serious impediment to the use
of Gaussian elimination. This problem is compounded by the fact that Gaussian elim-
ination is numerically unstable even if there are no zero pivot elements.
Numerical instability occurs when errors introduced by the finite precision representa-
tion of real numbers are of sufficient magnitude to swamp the true solution to a prob-
lem. In other words, a numerically unstable problem has a theoretical solution that may
be unobtainable in finite precision arithmetic.
The other LU decomposition schemes examined in this section exhibit similar char-
acteristics, e.g. instability is introduced by the division by ujj in Equation 46 and lii in
Equation 50.

4.6 Pivoting Strategies for Numerical Stability

A solution to the numerical instability of LU decomposition algorithms is obtained by
interchanging the rows and columns of A to avoid zero (and other numerically unstable)
pivot elements. These interchanges do not effect the solution to Equation 35 as long

22

4.6 Pivoting Strategies for Numerical Stability 4 LU DECOMPOSITION

Figure 3: Computational Sequence of Tinney’s LDU Decomposition

1/a11 a12/a11 a1n/a11

a21

a31

an1

...

...

a22 - a21a12
(1) a2n - a21a1n

(1)...

a32 - a31a12
(1) a3n - a31a1n

(1)...

an2 - an1a12
(1) ann - an1a1n

(1)...

a11
(1) a12

(1) ... a1n
(1)

a21 1/a22
(1) a1n

(1)/a22
(1)

a31 a32
(1)

...

... a3n
(1) - a32

(1)/a2n
(2)

an1 an2
(1) ... ann

(1) - an2
(1)/a2n

(2)

Note: aij
(k) is the kth stage partial sum of aij.

Stage 1

Stage 2

...... ...

D

L

U

U

Updated

D

L

Updated

...

23

4.7 Diagonal Dominance and Pivoting 4 LU DECOMPOSITION

as the permutations are logged and taken into account during the substitution process.
The choice of pivot elements 𝑎(𝑘)

𝑘𝑘 is referred to as a pivot strategy. In the general case,
there is no optimal pivot strategy. Two common heuristics are:

• At the kth stage of the computation, choose the largest remaining element in A as
the pivot. If pivoting has proceeded along the diagonal in stages 1 through k – 1,
this implies the next pivot should be the largest element 𝑎(𝑘−1)

𝑖𝑗 where k ≤ i ≤ n and
k ≤ j ≤ n. This strategy is referred to as complete pivoting.

• At the kth stage of the computation, select the largest element in column k as the
pivot. This strategy is referred to as partial pivoting.

Both procedures have good computational properties. Gaussian elimination with com-
plete pivoting is numerically stable. In most practical applications, Gaussian elimina-
tion with partial pivoting has the same stability characteristics as complete pivoting.
However, there are theoretical situations where partial pivoting strategies can become
unstable.
Applications of current interest are diagonally dominant; therefore, algorithms which
incorporate pivoting strategies for numerical stability are not examined in this docu-
ment. For implementations of Gaussian elimination with complete and partial pivoting,
see algorithms 4.4–1 and 4.4–2 of Golub and Van Loan (1983). For an implementation
of Doolittle’s method with scaled partial pivoting, see algorithm 3.5 of Conte and Boor
(1972). Crout’s method with scaled partial pivoting is implemented in section 2.3 of Press
et al. (1988). Pivoting strategies which control element growth in sparse matrices are
examined in Section 8.3 of this document.
The following sections present a brief introduction to the topic of pivoting to reduce
numerical instability.

4.7 Diagonal Dominance and Pivoting

We will begin our discussion of pivoting by identifying a condition in which pivoting is
unnecessary. The matrix A is row diagonally dominant when the following inequality
holds.

|𝑎𝑖𝑖| > ∑
𝑗≠𝑖

|𝑎𝑖𝑗| , where 𝑖 = 1, ⋯ , 𝑛 (52)

The matrix A is column diagonally dominant when the following inequality holds.

|𝑎𝑗𝑗| > ∑
𝑗≠𝑖

|𝑎𝑖𝑗| , where 𝑗 = 1, ⋯ , 𝑛 (53)

If either of these conditions apply, the LU decomposition algorithms discussed in this
document are numerically stable without pivoting.

24

4.8 Partial Pivoting 4 LU DECOMPOSITION

4.8 Partial Pivoting

If a partial pivoting strategy is observed (pivoting is restricted to row interchanges),
factorization produces matrices L and U which satisfy the following equation.

𝐋𝐔 = 𝐏𝐀 (54)

P is a permutation matrix that is derived as follows:
• P is initialized to I.
• Each row interchange that occurs during the decomposition of A causes a corre-

sponding row swap in P.
Recalling the definition of a linear system of equations

𝐀𝐱 = 𝐛

and premultiplying both sides by P

𝐏𝐀𝐱 = 𝐏𝐛

Using Equation 54 to substitute for PA yields

𝐋𝐔𝐱 = 𝐏𝐛 (55)

Following the same train of logic used to derive equations Equation 40 and Equation 41
implies that a solution for A can be achieved by the sequential solution of two triangular
systems.

𝐲 = 𝐏𝐛 (56)
𝐋𝐜 = 𝐲
𝐔𝐱 = 𝐜

Observe that the product Pb is computed before forward substitution begins. Com-
putationally, this implies that P can be implemented as a mapping that is applied to b
before substitution.

4.9 Complete Pivoting

If a complete pivoting strategy is observed (pivoting involves both row and column in-
terchanges), factorization produces matrices L and U which satisfy the following equa-
tion.

𝐋𝐔 = 𝐏𝐀𝐐 (57)

where P is a row permutation matrix and Q is a column permutation matrix. Q is
derived from column interchanges in the same way P is derived from row interchanges.

25

4.10 Computational Complexity of Pivoting 4 LU DECOMPOSITION

If A and its factors are related according to Equation 57, then Equation 35 can still be
solved for A by the sequential solution of two triangular systems.

𝐲 = 𝐏𝐛 (58)
𝐋𝐜 = 𝐲 (59)
𝐔𝐳 = 𝐜 (60)

𝐱 = 𝐐𝐳 (61)

Since Equation 56 and Equation 58 are identical, P can still be implemented as a map-
ping that is applied to b before substitution begins. Since Equation 61 computes the
product Qz after back substitution is finished, Q can be implemented as a mapping that
is applied to A following the substitution process.
If A is symmetric, pivoting for numerical stability may destroy the symmetry of the
LU decomposition of A. For a symmetric factorization of A, matching row and col-
umn interchanges are required. In other words, pivoting must be complete and the
permutation matrices must be related as follows:

𝐐 = 𝐏𝐓

4.10 Computational Complexity of Pivoting

Obviously, complete pivoting and partial pivoting differ substantially with regard to the
computational effort required to determine the next pivot element. Complete pivoting
on a dense, asymmetric matrix is an O(n3) operation requiring

2
3𝑛3 + 1

2𝑛2 + 1
6𝑛

floating point comparisons. Partial pivoting on the same matrix is an O(n2) operation
requiring

𝑛2 + 𝑛
2

floating point comparisons.

4.11 Scaling Strategies

Some algorithms attempt to reduce the roundoff error generated during LU decompo-
sition by preprocessing A. The most common roundoff control strategy is row scaling
where each equation is normalized (so that its largest coefficient has a value of one)
before a pivot is chosen. Pivoting strategies which employ scaling techniques usually
are implemented in two stages:

26

5 SOLVING TRIANGULAR SYSTEMS

Algorithm 4: Forward Substitution
for 𝑖 = 1, ⋯ , 𝑛

𝛼 = 𝑏𝑖
for 𝑗 = 1, ⋯ , 𝑖 − 1

𝛼 = 𝛼 − 𝑙𝑖𝑗𝑦𝑗
𝑦𝑖 = 𝛼

𝑙𝑖𝑖

1. Scan the equations to determine a set of scale factors.
2. Choose the pivot elements taking the scale factors into account.

However, a word of caution is in order. Scaling techniques do not solve the fundamental
roundoff problem of adding a large quantity to a small one. In fact, problems may arise
where scaling techniques exacerbate rather than ameliorate roundoff error.

5 Solving Triangular Systems

A triangular system of equations is efficiently solved by a series of variable substitutions.
By definition, there will always be at least one equation with a single unknown, one
equation with only two unknowns (one of which will correspond to the unknown in
the single variable equation), etc. This procedure can be formalized into two simple
algorithms.

• A lower triangular system is solved by forward substitution.
• An upper triangular system is solved by backward substitution.

These operations are described with reference to the solution of systems of linear equa-
tions whose LU decomposition is known. Equation 41 (Ly = b) and Equation 40 (Ux =
y) pose the problem in this context.

5.1 Forward Substitution

The equation Ly = b is solved by forward substitution as follows.

𝑦𝑖 =

𝑏𝑖 −
𝑖−1

∑
𝑗=1

𝑙𝑖𝑗𝑦𝑖

𝑙𝑖𝑖
, where 1 ≤ 𝑖 ≤ 𝑛 (62)

Algorithm 4 implements Equation 62.
If L is unit lower triangular, the division by lii is unnecessary (since lii is 1). Notice that
the update to yi is accumulated as an inner product in 𝛼.

27

5.2 Backward Substitution 5 SOLVING TRIANGULAR SYSTEMS

Algorithm 5: Backward Substitution
for 𝑖 = 𝑛, ⋯ , 1

𝛼 = 𝑦𝑖
for 𝑗 = 𝑖 + 1, ⋯ , 𝑛

𝛼 = 𝛼 − 𝑢𝑖𝑗𝑥𝑗
𝑥𝑖 = 𝛼

𝑢𝑖𝑖

Algorithm 6: Forward Substitution - Outer Product
for 1 = 1, ⋯ , 𝑛

𝑦𝑖 = 𝑏𝑖
𝑙𝑖𝑖

for 𝑘 = 𝑖 + 1, ⋯ , 𝑛
𝑏𝑘 = 𝑏𝑘 − 𝑦𝑖𝑙𝑘𝑖

5.2 Backward Substitution

The equation y = Ux is solved by backward substitution as follows.

𝑥𝑖 =

𝑦𝑖 −
𝑛

∑
𝑗=𝑖+1

𝑢𝑖𝑗𝑥𝑖

𝑢𝑖𝑖
, where 𝑖 = 𝑛, 𝑛 − 1, ⋯ , 1 (63)

Algorithm 5 implements Equation 63.
If U is unit upper triangular, the division by uii is unnecessary (since uii is 1). Notice that
the update to xi is accumulated as an inner product in 𝛼.

5.3 Outer Product Formulation

In Section 5.1 and Section 5.2 triangular systems are solved by techniques which use inner
product accumulation on each row of A. It is possible to formulate these algorithms in
a manner that arrives at the solution through partial sum accumulations (also known as
an outer product). Algorithm 6 solves lower triangular systems using an outer product
formulation of forward substitution. You should observe that if bi is zero, the ith stage
can be skipped. In this situation, yi will also be zero and the term yilki will not change
any of the partial sums bk.
Algorithm 7 solves upper triangular systems are using an outer product formulation of
the backward substitution algorithm. Also observe that when yi is zero, the ith stage can

28

6 FACTOR UPDATE

Algorithm 7: Back Substitution - Outer Product
for 𝑖 = 1, ⋯ , 𝑛

𝑥𝑖 = 𝑦𝑖
𝑢𝑖𝑖

for 𝑘 = 𝑖 − 1, ⋯ , 1
𝑦𝑘 = 𝑦𝑘 − 𝑥𝑖𝑢𝑘𝑖

be skipped. In this situation, xi will also be zero and the term xiuki will not change any
of the partial sums yk.
George and Liu (1981) examine outer product solutions of triangular systems as do Tin-
ney, Brandwajn, and Chan (1985).

6 Factor Update

If the LU decomposition of the matrix A exists and the factorization of a related matrix

𝐀′ = 𝐀 + 𝚫𝐀 (64)

is needed, it is sometimes advantageous to compute the factorization of A′ by modi-
fying the factors of A rather than explicitly decomposing A′. Implementations of this
factor update operation should have the following properties:

• Arithmetic is minimized,
• Numerical stability is maintained, and
• Sparsity is preserved.

The current discussion outlines procedures for updating the factors of A following a
rank one modification. A rank one modification of A is defined as

𝐀′ = 𝐀 + 𝛼𝐲𝐳𝐓 (65)

where 𝛼 is a scalar and the vectors y and zT are dimensionally correct. The terminology
comes from the observation that the product 𝛼zT is a matrix whose rank is one.
Computationally, a rank one factor update to a dense matrix is an O(n2) operation.
Recall that decomposing a matrix from scratch is O(n3).

6.1 LDU Factor Update

Algorithm 8 follows the lead of our sources (see Section 6.3 for details) and implements
a technique for updating the factors L, D, and U of A following a rank one change to
A.

29

6.2 LU Factor Update 6 FACTOR UPDATE

Algorithm 8: LDU Factor Update
for 𝑖 = 1, ⋯ , 𝑛

𝛿 = 𝑑𝑖
𝑝 = 𝑦𝑖
𝑞 = 𝑧𝑖
𝑑𝑖 = 𝑑𝑖 + 𝛼𝑝𝑞
𝛽1 = 𝛼𝑝

𝑑𝑖
𝛽2 = 𝛼𝑞

𝑑𝑖

𝛼 = 𝛼𝛿
𝑑𝑖

for 𝑗 = 𝑖 + 1, ⋯ , 𝑛
𝑦𝑗 = 𝑦𝑗 − 𝑝𝑙𝑗𝑖
𝑧𝑗 = 𝑧𝑗 − 𝑞𝑢𝑖𝑗
𝑙𝑗𝑖 = 𝑙𝑗𝑖 + 𝛽1𝑦𝑗
𝑢𝑖𝑗 = 𝑢𝑖𝑗 + 𝛽2𝑦𝑗

The scalar 𝛼 and the vectors y and zT are destroyed by this procedure. The factors of
A are overwritten by their new values.
The outer loop of Algorithm 8 does not have to begin at one unless y is full. If y has any
leading zeros, the initial value of i should be the index of yi the first nonzero element
of y. If there is no a priori information about the structure of y but there is a high
probability of leading zeros, testing yi for zero at the beginning of the loop might save
a lot of work. However, you must remember to cancel the test as soon as a nonzero yi
is encountered.

6.2 LU Factor Update

Similar algorithms exist for updating LU decompositions of A. If U is upper triangular
and L is unit lower triangular, an element uij from U is related to the elements 𝑢′

𝑖𝑗 and
𝑑′

𝑖 of the LDU decomposition as follows.

𝑢𝑖𝑗 = 𝑢′
𝑖𝑗𝑑′

𝑖 (66)

The recurrence relations of the inner loop of Algorithm 8 must change to reflect this
relationship. The following statement updates the z vector for a unit upper triangular
U.

𝑧𝑗 = 𝑧𝑗 − 𝑞𝑢′
𝑖𝑗 (67)

30

6.2 LU Factor Update 6 FACTOR UPDATE

Algorithm 9: LU Factor Update
for 𝑖 = 1, ⋯ , 𝑛

𝛿 = 𝑢𝑖𝑖
𝑝 = 𝑦𝑖
𝑞 = 𝑧𝑖
𝑢𝑖𝑖 = 𝑢𝑖𝑖 + 𝛼𝑝𝑞
𝛽1 = 𝛼

𝑢𝑖𝑖
𝛽2 = 𝛼𝑞
𝑞 = 𝑞

𝛿
𝛿 = 𝑢𝑖𝑖

𝛿
𝛼 = 𝛼

𝛿
for 𝑗 = 𝑖 + 1, ⋯ , 𝑛

𝑦𝑗 = 𝑦𝑗 − 𝑝𝑙𝑗𝑖
𝑧𝑗 = 𝑧𝑗 − 𝑞𝑢𝑖𝑗
𝑙𝑗𝑖 = 𝑙𝑗𝑖 + 𝛽1𝑦𝑗
𝑢𝑖𝑗 = 𝛿𝑢𝑖𝑗 + 𝛽2𝑧𝑗

If U is upper triangular, the statement becomes

𝑧𝑗 = 𝑧𝑗 − 𝑝
𝑢𝑖𝑗

𝛿 (68)

where 𝛿 is the value of uii before it was changed during stage i of the procedure. Along
the same lines, the factor update statement

𝑢′
𝑖𝑗 = 𝑢′

𝑖𝑗 + 𝛽2𝑧𝑗 (69)

becomes
𝑢𝑖𝑗

𝑢𝑖𝑖
=

𝑢𝑖𝑗

𝛿 + 𝛽2𝑧𝑗 (70)

Solving for the updated value of uij yields

𝑢𝑖𝑗 = 𝑢𝑖𝑖(
𝑢𝑖𝑗

𝛿 + 𝛽2𝑧𝑗) (71)

Taking these observations into consideration and pulling operations on constants out
of the inner loop, Algorithm 9 updates U based on a rank one change to A.
If U is unit upper triangular and L is lower triangular, a similar algorithm is derived
from the observation that lij of L and 𝑙′

𝑖𝑗 , 𝑑′
𝑖 of the LDU decomposition are related as

follows.

𝑙𝑖𝑗 = 𝑙′
𝑖𝑗𝑑′

𝑗 (72)

31

6.3 Additional Considerations 7 SYMMETRIC MATRICES

The resulting algorithm deviates from Algorithm 8 in a manner that parallels Algo-
rithm 9.

6.3 Additional Considerations

The algorithms presented in Section 6.1 and Section 6.2 are based on the work of Ben-
nett (1965). The nomenclature is similar to that of Gill et al. (1974). These citations
describe procedures for updating the factors of an LDU decomposition.
The procedure described by Bennett (1965) is more general than the algorithms de-
scribed in this section in that it applies to rank m changes to A. However, decomposing
a rank m change into m rank one changes and applying the current algorithms has the
same complexity as Bennett’s process and saves a little array space. Gill et al. (1974) state
that Bennett’s algorithm is theoretically unstable unless L = UT and y = z. In practice,
Bennett’s algorithm has proven to be stable for many physical problems with reason-
able values of 𝛼, y, and z. The algorithm rarely exhibits instability when it is applied to
diagonally dominant matrices where pivoting is not required. Gill et al. (1974) describe
alternate algorithms for situations where stability problems arise.
Hager (1989) provides a good overview of approaches to the problem of updating the
inverse of a matrix and describes practical areas in which the problem arises. Chan and
Brandwajn (1986) examine applications in network analysis.

7 Symmetric Matrices

Recall that an n × n symmetric matrix A is its own transpose

𝐀 = 𝐀𝐓

This being the case, the elements of A are described by the following relationship

𝑎𝑖𝑗 = 𝑎𝑗𝑖, for all 𝑖, 𝑗 (73)

7.1 LDU Decomposition of Symmetric Matrices

If A is symmetric, its LDU decomposition is symmetric, i.e.

𝐋 = 𝐔𝐓 (74)

and

𝐔 = 𝐋𝐓 (75)

32

7.2 LU Decomposition of Symmetric Matrices 7 SYMMETRIC MATRICES

For this reason, the LDU decomposition of a symmetric matrix is sometimes referred
to as an LDLT decomposition. The elements L and U of the LDU decomposition of a
symmetric matrix are related as follows.

𝑙𝑖𝑗 = 𝑢𝑗𝑖, where 𝑖 ≠ 𝑗 (76)

7.2 LU Decomposition of Symmetric Matrices

Given the symmetric structure of the LDU factors of a symmetric matrix (see Sec-
tion 7.1) and the common use of LU factorization in the analysis of linear systems, it
is constructive to develop expressions that relate an explicit LU decomposition to an
implicit LDU factorization. In subsequent sections of this document, they will prove
useful in deriving symmetric variants of the algorithms discussed in Section 4 and Sec-
tion 5.
In other words, the symmetric factorization algorithms discussed in this document as-
sume an LU decomposition exists (or is to be computed) such that

• Its existing (explicit) factorization (either L or U) is triangular, and
• The desired (implicit) factorization is unit triangular.

This implies that algorithms which deal with an explicit set of lower triangular factors,
call them 𝐋, will associate the factors of an implicit LDU decomposition as follows

𝐋 = 𝐋𝐃 (77)

or

𝐋 = 𝐋𝐃−𝟏

Substituting for L based on Equation 74 yields

𝐔𝐓 = 𝐋𝐃−𝟏 (78)

Recalling that the inverse of a diagonal matrix is the arithmetic inverse of each element
and taking the product yields

𝑢𝑗𝑖 =
𝑙𝑖𝑗

𝑑𝑖𝑖

Since 𝑑𝑖𝑖 = 𝑙𝑖𝑖,

𝑢𝑖𝑗 =
𝑙𝑗𝑖

𝑙𝑗𝑗
(79)

33

7.3 Symmetric Matrix Data Structures 7 SYMMETRIC MATRICES

In a similar vein, algorithms that deal with an explicit set of upper triangular factors,
call them 𝐔, will associate the factors of an LDU decomposition as follows.

𝐔 = 𝐃𝐔 (80)
This association yields the following relationship between the explicit factors 𝐔 and
implicit factors L.

𝑙𝑖𝑗 =
𝑢𝑗𝑖

𝑢𝑗𝑗
(81)

These observations show that it is only necessary to compute and store 𝐋 or 𝐔 during
the LU factorization of a symmetric matrix. This halves the arithmetic required during
the factorization procedure. However, symmetry does not reduce the work required
during forward and backward substitution.

7.3 Symmetric Matrix Data Structures

Recognizing the special character of symmetric matrices can save time and storage dur-
ing the solution of linear systems. More specifically, a dense matrix requires storage for
n2 elements. A symmetric matrix can be stored in about half the space, 𝑛2+𝑛

2 elements.
Only the upper (or lower) triangular portion of A has to be explicitly stored. The im-
plicit portions of A can be retrieved using Equation 73. An efficient data structure
for storing dense, symmetric matrices is a simple linear array. If the upper triangular
portion of A is retained, the array is organized in the following manner.

𝐀 = (𝑎11, 𝑎12, ⋯ , 𝑎1𝑛, 𝑎21, ⋯ , 𝑎2𝑛, ⋯ , 𝑎𝑛𝑛) (82)
The element a𝑖𝑗 is retrieved from the linear array by the following indexing rule.

𝑎𝑖𝑗 = 𝐚[(𝑖 − 1)(𝑛) − (𝑖 − 1)𝑖/2 + 𝑗] (83)
If array and matrix indexing is zero based (as in the C programming language), the sub-
scripting rule becomes

𝑎𝑖𝑗 = 𝐚[𝑖𝑛 − (𝑖 − 1)𝑖/2 + 𝑗] (84)
If the lower triangular portion of A is retained, the linear array is organized as follows.

𝐀 = (𝑎11, 𝑎21, 𝑎22, 𝑎31, ⋯ , 𝑎𝑛1, 𝑎𝑛2, ⋯ , 𝑎𝑛𝑛) (85)
The element aij is retrieved from the linear array by the following indexing rule.

𝑎𝑖𝑗 = 𝐚[𝑖(𝑖 − 1)/2 + 𝑗] (86)
If array and matrix subscripts are zero based, Equation 86 becomes

𝑎𝑖𝑗 = 𝐚[𝑖(𝑖 + 1)/2 + 𝑗] (87)
You will observe that the dimension of A does not enter the indexing calculation when
its lower triangular portion is retained. The indexing equations are implemented most
efficiently by replacing division by two with a right shift.

34

7.4 Doolittle’s Method for Symmetric Matrices 7 SYMMETRIC MATRICES

Algorithm 10: Doolittle’s Method - Symmetric Implementation
for 𝑖 = 1, ⋯ , 𝑛

for 𝑗 = 1, ⋯ , 𝑖 − 1
𝑤𝑗 =

𝑎𝑗𝑖

𝑎𝑗𝑗
for 𝑗 = 𝑖, ⋯ , 𝑛

𝛼 = 𝑎𝑖𝑗
for 𝑝 = 1, ⋯ , 𝑖 − 1

𝛼 = 𝛼 − 𝑎𝑖𝑝𝑤𝑝
𝑎𝑖𝑗 = 𝛼

Algorithm 11: Doolittle’s Method - Symmetric, Array Based
for 𝑖 = 0, ⋯ , 𝑛 − 1

for 𝑗 = 0, ⋯ , 𝑖 − 1

𝐰[j] =
𝐚[jn-j(j+1)/2+i]
𝐚[jn-j(j+1)/2+j]

for 𝑗 = 𝑖, ⋯ , 𝑛 − 1
𝛼 = 𝐚[in-i(i+1)/2+j]
for 𝑝 = 1, ⋯ , 𝑖 − 1

𝛼 = 𝛼 − 𝐚[in-i(i+1)/2+p]⋅𝐰[p]
𝐚[in-i(i+1)/2+j] = 𝛼

7.4 Doolittle’s Method for Symmetric Matrices

If A is a symmetric n × n matrix, Algorithm 10 computes – one row at a time – the upper
triangular matrix U that results from a Doolittle decomposition. The upper triangular
portion of A is overwritten by U.
The algorithm uses a working vector w of length n to construct the relevant portion
of row i from L at each stage of the factorization. Elements from L are derived using
Equation 81.
If the upper triangular portion of A is stored in a linear array, Algorithm 11 results in the
same factorization (assuming zero based subscripting). The upper triangular portion
ofA is overwritten by U.
For the general implementation of Doolittle’s method, see Section 4.2.

35

7.5 Crout’s Method for Symmetric Matrices 7 SYMMETRIC MATRICES

Algorithm 12: Crout’s Method - Symmetric Implementation
for 𝑗 = 1, ⋯ , 𝑛

for 𝑖 = 1, ⋯ , 𝑗 − 1
𝑤𝑖 =

𝑎𝑗𝑖

𝑎𝑖𝑖
for 𝑖 = 𝑗, ⋯ , 𝑛

𝛼 = 𝑎𝑖𝑗
for 𝑝 = 1, ⋯ , 𝑗 − 1

𝛼 = 𝛼 − 𝑎𝑖𝑝𝑤𝑝
𝑎𝑖𝑗 = 𝛼

Algorithm 13: Crout’s Method - Symmetric, Array Based
for 𝑗 = 0, ⋯ , 𝑛 − 1

for 𝑖 = 0, ⋯ , 𝑗 − 1

𝐰[j] =
𝐚[jn-j(j+1)/2+i]
𝐚[jn-j(j+1)/2+j]

for 𝑖 = 𝑗, ⋯ , 𝑛 − 1
𝛼 = 𝐚[i(i+1)/2+j]
for 𝑝 = 1, ⋯ , 𝑖 − 1

𝛼 = 𝛼 - 𝐚[i(i+1)/2+p] ⋅ 𝐰[p]
𝐚[i(i+1)/2+j] = 𝛼

7.5 Crout’s Method for Symmetric Matrices

If A is a symmetric n × n matrix, Algorithm 12 computes – one column at a time – the
lower triangular matrix L that results from a Crout decomposition. The lower triangular
portion of A is overwritten by L.
The algorithm uses a working vector w of length n to construct the relevant portion of
column j from U at each stage of the factorization. Elements from U are derived using
Equation 79.
If the lower triangular portion of A is stored in a linear array, Algorithm 13 results in
the same factorization (assuming zero based subscripting). The algorithm overwrites A
with L.
For the general implementation of Crout’s method, see Section 4.3.

36

7.6 Forward Substitution for Symmetric Systems 7 SYMMETRIC MATRICES

Algorithm 14: Symmetric Forward Substitution via Upper Triangular Factors
for 𝑖 = 1, ⋯ , 𝑛

𝛼 = 𝑏𝑖
for 𝑗 = 1, ⋯ , 𝑖 − 1

𝛼 = 𝛼 −
𝑢𝑗𝑖

𝑢𝑗𝑗
𝑦𝑗

𝑦𝑖 = 𝛼

7.6 Forward Substitution for Symmetric Systems

Symmetry reduces the amount of work required to decompose symmetric systems into
triangular factors. It does not reduce the work required to actually solve the system
from an existing triangular factorization. Implementing forward substitution for a sym-
metric decomposition boils down to making sure implicit data (i.e. the portion of the
symmetric factorization that is not not physically stored) is correctly derived from the
explicitly stored data. See Section 7.2 for a discussion of implicit data in symmetric LU
decompositions.

7.6.1 Forward Substitution Using Lower Triangular Factors

Forward substitution solves lower triangular systems. When L is available, the sym-
metric and asymmetric solution algorithms are identical. See Section 5.1 for the general
implementation of forward substitution. If L is stored in a linear array, use Equation 86
or Equation 87 for indexing.

7.6.2 Forward Substitution Using Upper Triangular Factors

The case in which U is the explicit factorization is examined more closely. If U is an n
× n matrix containing the upper triangular factors of a symmetric matrix, then L is unit
lower triangular and obtained from U via Equation 81 with l𝑗𝑗 being one. Substituting
Equation 81 into Equation 62 yields:

𝑦𝑖 = 𝑏𝑖 −
𝑛

∑
𝑗=𝑖+1

𝑢𝑗𝑖𝑦𝑗

𝑢𝑗𝑗
, where 1 ≤ 𝑖 ≤ 𝑛 (88)

Algorithm 14 implements Equation 88, i.e. the inner product formulation of forward
substitution for symmetric systems whose upper triangular factors are available.
If U is stored in a linear array with zero based indexing, the inner product formulation
of forward substitution is implemented by Algorithm 15.

37

7.7 Backward Substitution for Symmetric Systems 7 SYMMETRIC MATRICES

Algorithm 15: Symmetric Forward Substitution using U with Array Storage
for 𝑖 = 0, ⋯ , 𝑛 − 1

𝛼 = 𝐛[i]
for 𝑗 = 0, ⋯ , 𝑖 − 1

𝛼 = 𝛼 −
𝐮[jn-j(j+1)/2+i]
𝐮[jn-j(j+1)/2+j]

⋅ 𝐲[j]

𝐲[i] = 𝛼

Algorithm 16: Symmetric Forward Substitution using U, Outer Product
for 𝑖 = 1, ⋯ , 𝑛

𝑦𝑖 = 𝑏𝑖

𝛼 = 𝑦𝑖
𝑢𝑖𝑖

for 𝑘 = 𝑖 + 1, ⋯ , 𝑛
𝑏𝑘 = 𝑏𝑘 − 𝛼𝑢𝑖𝑘

Algorithm 16 implements the outer product formulation of forward substitution for
symmetric systems whose upper triangular factors are available.
This differs from the asymmetric implementation in that

𝑙𝑖𝑖 = 1 and 𝑙𝑘𝑖 = 𝑢𝑖𝑘
𝑢𝑖𝑖

, where 𝑖 ≠ 𝑘 (89)

Therefore, the initial division by l 𝑖𝑖 is omitted and the division by u𝑖𝑖 is pulled out of the
k loop. The outer product formulation of forward substitution where U is stored in a
linear array with zero based indexing is realized by Algorithm 17.

7.7 Backward Substitution for Symmetric Systems

As stated previously, symmetry reduces the amount of work required to decompose
symmetric systems into triangular factors. It does not reduce the work required to

Algorithm 17: Symmetric Forward Substitution using U, Outer Product, Array
for 𝑖 = 0, ⋯ , 𝑛 − 1

𝐲[i] = 𝐛[i]

𝛼 = 𝐲[i]
𝐮[in-i(i+1)/2+i]

for 𝑘 = 𝑖 + 1, ⋯ , 𝑛 − 1
𝐛[k] = 𝐛[k] −𝛼 ⋅ 𝐮[in-i(i+1)/2+k]

38

7.7 Backward Substitution for Symmetric Systems 7 SYMMETRIC MATRICES

Algorithm 18: Symmetric Back Substitution using Lower Triangular Factors
for 𝑖 = 1, ⋯ , 𝑛

𝛼 = 𝑦𝑖
for 𝑗 = 1, ⋯ , 𝑖 − 1

𝛼 = 𝛼 −
𝑙𝑗𝑖

𝑙𝑗𝑗
𝑥𝑗

𝑥𝑖 = 𝛼

actually solve the system from an existing triangular factorization. Implementing back-
ward substitution for a symmetric decomposition reduces to making sure that implicit
data (i.e. the portion of the symmetric factorization that is not not physically stored)
is correctly derived from the explicitly stored data. See Section 7.2 for a discussion of
implicit data in symmetric LU decompositions.

7.7.1 Back Substitution Using Upper Triangular Factors

Backward substitution solves upper triangular systems. When U is available, the sym-
metric and asymmetric solution algorithms are identical. See Section 5.2 for the general
implementation of backward substitution. If U is stored in a linear array, use Equa-
tion 86 or Equation 87 for indexing.

7.7.2 Back Substitution Using Lower Triangular Factors

The case in which L is the explicit factorization merits further attention. If L is an n ×
n matrix containing the upper triangular factors of a symmetric matrix, then U is unit
lower triangular and obtained from L via Equation 79 with u𝑖𝑖 being one. Substituting
Equation 79 into Equation 63 yields:

𝑥𝑖 = 𝑦𝑖 −
𝑛

∑
𝑗=𝑖+1

𝑙𝑗𝑖𝑥𝑗

𝑙𝑗𝑗
, where 𝑖 = 𝑛, 𝑛 − 1, ⋯ , 1 (90)

Algorithm 18 implements this inner product formulation of backward substitution for
symmetric systems whose lower triangular factors are available.
If L is stored in a linear array with zero based indexing, the inner product formulation
of back substitution is stated in Algorithm 19.

39

7.8 Symmetric Factor Update 7 SYMMETRIC MATRICES

Algorithm 19: Symmetric Backward Substitution using L with Array Storage
for 𝑖 = 𝑛 − 1, ⋯ , 0

𝛼 = 𝐲[i]
for 𝑗 = 𝑖 + 1, ⋯ , 𝑛 − 1

𝛼 = 𝛼 −
𝐥[jn-j(j+1)/2+i]
𝐥[jn-j(j+1)/2+j])

⋅ 𝐱[j]

𝐱[i] = 𝛼

7.8 Symmetric Factor Update

If the LU decomposition of the n × n symmetric matrix A exists and the factorization
of a related matrix

𝐀′ = 𝐀 + 𝚫𝐀

is desired, factor update is often the procedure of choice.
Section 6 examines factor update techniques for dense, asymmetric matrices. The cur-
rent section examines techniques that exploit computational efficiencies introduced by
symmetry. Symmetry reduces the work required to update the factorization of A by
half, just as it reduces the work required to decompose A in the first place.
More specifically, the current section examines procedures for updating the factors of
A following a symmetric rank one modification

𝐀′ = 𝐀 + 𝛼𝐲𝐲𝐓

where 𝛼 is a scalar and y is an n vector.

7.8.1 Symmetric LDU Factor Update

Algorithm C1 of Gill et al. (1974) updates the factors L and D of a LDU decomposition
of A. The algorithm assumes that the upper triangular factors U are implicit. Algo-
rithm 20 mimics Algorithm C1. The scalar 𝛼 and the y vector are destroyed by this
procedure. The factors of A are overwritten by their new values.
See Section 6.1 for a discussion of updating asymmetric LDU factorizations following
rank one changes to a matrix.

7.8.2 Symmetric LU Factor Update

If the LU decomposition of the symmetric matrix A exists and U is stored explicitly,
the recurrence relations of the inner loop of Algorithm 20 must change. Following a

40

7.8 Symmetric Factor Update 7 SYMMETRIC MATRICES

Algorithm 20: Symmetric LDU Factor Update
for 𝑗 = 1, ⋯ , 𝑛

𝛿 = 𝑑𝑗
𝑝 = 𝑦𝑗
𝑑𝑗 = 𝑑𝑗 + 𝛼𝑝2

𝛽 = 𝛼𝑝
𝑑𝑗

𝛼 = 𝛼𝛿
𝑑𝑗

for 𝑖 = 𝑗 + 1, ⋯ , 𝑛
𝑦𝑖 = 𝑦𝑖 − 𝑝𝑙𝑖𝑗
𝑙𝑖𝑗 = 𝑙𝑖𝑗 + 𝛽𝑦𝑖

Algorithm 21: Symmetric LU Factor Update
for 𝑖 = 1, ⋯ , 𝑛

𝛿 = 𝑢𝑖𝑖
𝑝 = 𝑦𝑖
𝑢𝑖𝑖 = 𝑢𝑖𝑖 + 𝛼𝑝2

𝛽 = 𝛼𝑝
𝑝 = 𝑝

𝛿
𝛿 = 𝑢𝑖𝑖

𝛿
𝛼 = 𝛼

𝛿
for 𝑗 = 𝑖 + 1, ⋯ , 𝑛

𝑦𝑗 = 𝑦𝑗 − 𝑝𝑢𝑖𝑗
𝑢𝑖𝑗 = 𝛿𝑢𝑖𝑗 + 𝛽𝑦𝑦

train of thought similar to the derivation of Algorithm 9 (see Section 6.2 for details)
results in Algorithm 21 which updates U based on a rank one change to A.
If U is maintained in a zero-based linear array, Algorithm 21 changes in the normal
manner, that is

1. The double subscript notation is replaced by the indexing rule defined in Equa-
tion 87.

2. The outer loop counter i ranges from zero to n-1.
3. The inner loop counter j ranges from i+1 to n-1.

The outer loops of the symmetric factor update algorithms do not have to begin at one
unless y is full. If U has any leading zeros, the initial value of i (or j in Algorithm 20)

41

8 SPARSE MATRICES

should be the index of yi the first nonzero element of y. If there is no a priori information
about the structure of y but there is a high probability of leading zeros, testing yi for zero
at the beginning of the loop might save a lot of work. However, you must remember to
suspend the test as soon as the first nonzero value of yi is encountered.
For a fuller discussion of the derivation and implementation of LU factor update, see
Section 6.2.

8 Sparse Matrices

The preceding sections examined dense matrix algorithms for solving systems of linear
equations. It was seen that significant savings in storage and computation is achieved by
exploiting the structure of symmetric matrices. An even more dramatic performance
gain is possible by exploiting the sparsity intrinsic to many classes of large systems.
Sparse matrix algorithms are based on the simple concept of avoiding the unnecessary
storage of zeros and unnecessary arithmetic associated with zeros (such as multiplica-
tion by zero or addition of zero). Recognizing and taking advantage of sparsity often
permits the solution of problems that are otherwise computationally intractable. Prac-
tical examples provided by Tinney and Hart (1972) suggest that in the analysis of large
power system networks the use of sparse matrix algorithms makes both the storage
and computational requirements approximately linear with respect to the size of the
network. In other words, data storage is reduced from an O(n2)problem to an O(n)
problem and computational complexity diminishes fromO(n3) to O(n).

8.1 Sparse Matrix Methodology

Any matrix with a significant number of zero-valued elements is referred to as a sparse
matrix. The meaning of “significant” in the preceding definition is rather vague. It is
pinned down (in a circular way) by defining a sparse matrix to be a matrix with enough
zeros to benefit from the use of sparsity techniques. The intent of this definition is
to emphasize that there is a computational overhead required by sparse matrix proce-
dures. If the degree of sparsity in a matrix compensates for the algorithmic overhead,
sparsity techniques should be employed. Otherwise, dense matrix algorithms should
be utilized. This argument simply restates a fundamental rule of numerical analysis, a
priori information concerning the nature of a problem tends to result in more efficient
solution techniques.
The next few sections will explore the application of sparsity techniques to the solution
of large systems of linear equations. The standard approach is to break the solution into
three phases:

1. Analyze. Determine an ordering of the equations such that the LU decomposition
will retain as much sparsity as possible. This problem has been shown to be N-P

42

8.2 Abstract Data Types for Sparse Matrices 8 SPARSE MATRICES

complete (i.e. the optimal solution can not be efficiently determined). However, a
number of satisfactory heuristics are available. The analysis phase of the solution
usually produces a complete definition of the sparsity pattern that will result when
the LU decomposition is computed.

2. Factor. Compute the LU decomposition.
3. Solve. Use the LU decomposition to compute a solution to the system of equations

(i.e. perform forward and backward substitution).
The degree to which these phases are distinct depends on the implementation.

8.2 Abstract Data Types for Sparse Matrices

The traditional implementation of sparse matrix techniques in engineering and scien-
tific analysis is heavily reminiscent of its roots in the static data structures of FOR-
TRAN. Descriptions of these data structures are provided by Duff, Erisman, and Reid
(1986), Tinney and Hart (1972) among others. The current implementation takes a dif-
ferent tack. Sparse matrix algorithms are described using an abstract data type paradigm.
That is, data sets and operators are specified, but the actual data structures used to
implement them are left undefined. Any data structure that efficiently satisfies the
constraints imposed in this section is suited for the job.
All signals emitted by the operators defined in this section are used to navigate through
data, not to indicate errors. Error processing is intentionally omitted from the algo-
rithms appearing in this document. The intent is to avoid clutter that obscures the
nature of the algorithms.

8.2.1 Sparse Matrix

A sparse matrix, A, is stored in a dynamic data structure that locates an element aij
based on its row index i and column index j. The following operations are supported
on A:

• Insert adds an arbitrary element aij to A. If aij does not already exist, insert
signals a successful insertion. In subsequent algorithms, insertion of element ai,j
into a sparse matrix is represented as
insert(A, i, j, a)

• Get retrieves an arbitrary element aij from A. When aij is an element of A, get
signals a successful lookup. In subsequent algorithms, retrieval of element ai,j from
a sparse matrix is represented as
get(A, i, j, a)

• Scan permits sequential access to the nonzero entries of row i of A. Row scans
are bounded. More specifically, a row scan finds all nonzero entries aij in row i

43

8.2 Abstract Data Types for Sparse Matrices 8 SPARSE MATRICES

of A such that jmin ≤ j ≤ jmax.When scan finds aij its column index j is returned.
When the scan has exhausted all entries in its range, a finished signal is emitted.
In subsequent algorithms, iterating row i of a sparse matrix is represented as
scan(A, i, jmin , jmax , a)
A scan has two support operations, push_scan and pop_scan, which permit
the nesting of scans.
Push_scan suspends the scan at its current position.
Pop_scan resumes a suspended scan.

• Put updates the value an arbitrary element aij of A. In subsequent algorithms,
updating element ai,j of a sparse matrix is represented as
put(A, i, j, a)

In the context of the preceding function prototypes, parameters A and a can be thought
of as C/C++ pointers or references. Other arguments can be viewed as integers.
The sparse matrix algorithms assume that operations that read the data structure (get
and scan) make the designated element aij of A available in a buffer. Operations that
update aij (insert and put) do so based on the current contents of the communication
buffer.The buffer can be conceptualized as a C/C++ struct. For sparse matrices, the
structure always contains at least one field: an element of the matrix. To avoid clutter
in the algorithms, this ”element” field is implicit. The assignment

𝛿 = 𝑎

acutally represents

𝛿 = 𝑎.𝑒𝑙𝑒𝑚𝑒𝑛𝑡

Should other fields of the structure become relevant, they are represented explicitly.
Section 9.1 examines one possible realization of the sparse matrix data type.

8.2.2 Adjacency List

An adjacency list, A, is a data type for representing adjacency relationships of the sparse
graph G = (V, E). An adjacency list is typically stored in a dynamic data structure that
identifies the edge from vertex i to vertex j as an ordered pair of vertex labels (i,j). De-
scriptive information is usually associated with each edge. Basic concepts of adjacency
lists are reviewed in Section 2.3 (Representing Sparse Graphs as Adjaceny Lists) of the
companion monograph Graph Algorithms.
Since both adjacency lists and sparse matrices represent sparse networks, it should come
as no surprise that they require a similar set of operations. More specifically, the fol-
lowing operations are supported on an adjacency list A:

44

https://vismor.com/documents/network_analysis/graph_algorithms/S2.SS3.php

8.2 Abstract Data Types for Sparse Matrices 8 SPARSE MATRICES

• Insert adds an arbitrary edge ei,j to A. If edge ei,j is not already in the list, insert
signals a successful insertion. In subsequent algorithms, insertion of edge ei,j into
an adjacency list is represented as
insert(A, i, j, e)

• Get retrieves an arbitrary edge ei,j from A. When edge ei,j is in A, get signals
a successful lookup. In subsequent algorithms, retrieval of of edge ei,j from an
adjacency list is represented as
get(A, i, j, e)

• Iterate permits sequential access to all edges incident upon vertex i. Vertex
scans are bounded. More specifically, a vertex scan finds all edges ei,j such that
jmin ≤ j ≤ jmax. When iterate finds edge ei,j, it returns j. When a vertex scan
has exhausted all entries in its range, a finished signal is emitted. In subsequent
algorithms, iterating the edges associated with vertex i is represented as
iterate(A, i, jmin , jmax , e)
A iterate has two support operations, push_iteratation and pop_iteration,
which permit nesting of the operation.
Push_iteratation saves the current state of an iteration process.
Pop_iteratation restores the most recently suspended iteration state.

• Put updates the information associated with an arbitrary edge ei,j in A. In subse-
quent algorithms, updating edge ei,j of an adjacency list is represented as
put(A, i, j, e)

In the context of the preceding function prototypes, parameters A and e can be thought
of as C/C++ pointers or references. Other arguments can be viewed as integers.
The algorithms assume that read operations (get and scan) make edge information
available in a buffer (this buffer is usually denoted by the symbol e). Update operations
(insert and put) modify the information associated with an edge based on the current
contents of the communication buffer. The buffer can be conceptualized as a C/C++
struct. Any of the adjacency list buffer fields required by an algorithm are explicitly
referenced, ie. e.fillup represents the ”fillup” edge buffer field.
Algorithms for implementing adjacency lists are examined in Section 4 (Creating Adjacency
Lists) of the companion monograph Graph Algorithms.

8.2.3 Reduced Graph

A reduced graph, G ′ = (V ′, E ′), is a data structure that supports the systematic elimi-
nation of all vertices from the graph G = (V, E). The vertices of the reduced graph are
denoted as V ′(G ′) and its edges as E ′(G ′). A crucial attribute of the reduced graph is
efficient identification of the vertex in V ′(G ′) with the minimum degree.

45

https://vismor.com/documents/network_analysis/graph_algorithms/S4.php
https://vismor.com/documents/network_analysis/graph_algorithms/S4.php

8.2 Abstract Data Types for Sparse Matrices 8 SPARSE MATRICES

A reduced graph supports the following operations:
• Increase_degree increases the degree of vertex v in V ′(G ′) by one.
• Decrease_degree decreases the degree of vertex v in V ′(G ′) by one.
• In_graph tests to see whether vertex v is in V ′(G ′).
• Minimum_degree finds the vertex v in V ′(G ′) with the smallest degree.
• Remove excises vertex v from V ′(G ′).

Implementation of reduced graph modeling is examined in detail by Section 8.2 (Elimi-
nating Many Vertices), Section 8.3 (Initializing Minimum Degree Vertex Tracking), and
Section 8.4 (Maintaining the Reduced Graph) of Graph Algorithms.

8.2.4 List

A simple list L is an ordered set of elements. If the set { l1, …, li, li+1, …, ln } represents
L, then the list contains n elements. Element l1 is the first item on the list and ln is the
last item on the list. Element li precedes li+1 and element li+1 follows li. Element li is
at position i in L. Descriptive information may accompany each item on a list. Lists
associated with matrix algorithms support the following operations:

• Link adds an element x to a list at position i. Inserting element x into the list at
position i results an an updated list: { l1, …, li, li+1, …, ln } An insertion at position
eol appends x to the end of the list.

• Unlink removes the element at position i from the list. Deleting element i results
in the list { l1, …, li, li+1, …, ln }.

• Find looks for an element on the list and returns its position. If the element is
not a member of the list, eol is returned.

• First returns the position of the first item on the list. When the list is empty,
eol is returned.

• Next returns position i+1 on the list if position i is provided. If l 𝑖 is the last item
on the list, eol is returned.

• Prev returns position i-1 on the list if position i is provided. If i is one, eol is
returned.

A linked list refers to a list implementation that does not require its members to reside
in contiguous storage locations. In this environment, an efficient implementation of
the prev operator dictates the use of a doubly linked list.
Communicating with a simple list is analogous to adjacency list communication. Read
operations (find, first, next, and prev) make list information available in a buffer.
Update operations (link, unlink) modify the list based on the current contents of the
buffer.

46

https://vismor.com/documents/network_analysis/graph_algorithms/S8.SS2.php
https://vismor.com/documents/network_analysis/graph_algorithms/S8.SS2.php
https://vismor.com/documents/network_analysis/graph_algorithms/S8.SS3.php
https://vismor.com/documents/network_analysis/graph_algorithms/S8.SS4.php

8.3 Pivoting To Preserve Sparsity 8 SPARSE MATRICES

8.2.5 Mapping

A mapping 𝜇 relates elements of its domain d to elements of its range r as follows.

𝜇(𝑑) = 𝑟

A mapping resides in a data structure that supports two operations:
• Map links an element r in the range of 𝜇 to an arbitrary element d in the domain

of 𝜇, i.e. sets 𝜇(d) to r.
• Evaluate evaluates the mapping 𝜇 for an arbitrary element d in its domain, i.e.

returns 𝜇(d).

8.2.6 Vector

For simplicity of exposition, a full vector is represented as a linear array. However, any
data structure that lets you retrieve and update an arbitrary element bi of a vector b
based upon its index i will suffice.

8.3 Pivoting To Preserve Sparsity

As Gaussian elimination is applied to a sparse matrix A, row operations tend to intro-
duce nonzero elements into L and U that have no counterpart in A. These nonzero
entries in L and U that are induced by the factorization process are referred to as fill-
ups. A fact central to sparse matrix techniques is that changes in the pivot strategy
change the number fill-ups that occur during factorization.
This being the case, an important goal of sparse matrix algorithms is to find a pivot
strategy that minimizes the number of fill-ups during LU decomposition. For the asym-
metric case, Rose and Tarjan (1975) have shown that this minimization problem is NP
complete. For the symmetric case, no optimal solution exists to date. Therefore, exist-
ing fill-up reduction algorithms are heuristic in nature.

8.3.1 Markowitz Pivot Strategy

Among the most successful heuristics are those based on the work of Markowitz [1957].
A Markowitz pivot strategy involves choosing a pivot element aij which minimizes a
quantity called the Markowitz count at each elimination step. The Markowitz count is
the product

(𝑟𝑖 − 1)(𝑐𝑗 − 1) (91)

where

47

8.3 Pivoting To Preserve Sparsity 8 SPARSE MATRICES

ri is the number of entries in row i of the reduced matrix, and
cj is the number of entries in column j of the reduced matrix.

Stability considerations are introduced into Markowitz pivoting strategies by defining
numerical thresholds that also apply to pivot candidates. In effect, these thresholds
temper sparsity considerations to preserve numerical stability. Typical threshold con-
siderations require that the successful pivot candidate satisfy the following conditions:

|𝑎(𝑘)
𝑖𝑗 | ≥ 𝑢 max

𝑙≥𝑘
|𝑎(𝑘)

𝑖𝑗 | (92)

where u is a number falling in the range 0 < 𝑢 ≤ 1.
Duff, Erisman, and Reid (1986) provide a thorough examination of pivoting strategies
in asymmetric matrices that are based on the Markowitz criterion.

8.3.2 Minimum Degree Pivot Strategy

If aji is nonzero whenever aij is nonzero, matrix A has a symmetric sparsity structure. If
A is diagonally dominant and has a symmetric sparsity structure, the minimum degree
pivot strategy is commonly used to reduce fill-ups during LU decomposition. Minimum
degree pivoting is a special case of Markowitz pivoting that ignores the numerical values
of aij and concentrates the structure of A.
The most straightforward motivation of minimum degree pivoting is based on the fol-
lowing observations:

• Any matrix A with symmetric sparsity structure can be represented by an undi-
rected, ordered graph G = (V, E).

• The effect of Gaussian elimination on the sparsity structure of A is modeled by
the impact of eliminating vertices from G.

Vertex elimination is examined elsewhere in this series of monographs–see the discus-
sion in Section 8 (Vertex Elimination) of Graph Algorithms for more information. At this
point, it suffices to say that a vertex v is eliminated from the graph G = (V, E) by

1. Removing vertex v from V (G).
2. Removing all edges that were incident upon v from E(G).
3. Adding edges to E(G) that connect all the vertices that were adjacent to v.

The edges that are added to G when vertex v is eliminated correspond to the fill-ups
that occur in A when row v is eliminated.
The minimum degree pivot strategy is just the order in which the following algorithm
eliminates the vertices of G.

48

https://vismor.com/documents/network_analysis/graph_algorithms/S8.php

8.4 Symbolic Factorization of Sparse Matrices 8 SPARSE MATRICES

for 𝑖 = 1, ⋯ , |𝑉 |
Choose the vertex 𝑣 from 𝑉 that has the minimum degree

Eliminate vertex 𝑣 from 𝐺

You should recall that the degree of vertex v is the number of vertices that are adjacent
to v. The algorithm has an arbitrary tie-breaking rule. If more than one vertex is of
minimum degree at the beginning of an elimination step, any vertex from the group may
be eliminated. Gomez and Franquelo (1988b), Gomez and Franquelo (1988a) examine
the impact of alternate tie-breaking schemes on minimum degree pivoting strategies.
Simply put, the minimum degree algorithm pivots on the vertex which has the fewest
neighbors at each elimination step. This heuristic appears to have been first described Tin-
ney and Hart (1972). A lucid and thorough examination of the topic is found in George
and Liu (1981).

8.4 Symbolic Factorization of Sparse Matrices

The goal of symbolic factorization is to define the sparsity pattern of the LU decom-
position of a sparse matrix A. Recall that

𝐋𝐔 = 𝐏𝐀𝐐 (93)

where P and Q are row and column permutations that reflect the pivot strategy associ-
ated with the factorization process.

8.4.1 Symbolic Factorization with Minimum Degree Pivot

The goal of the current section is somewhat more specific. It describes a symbolic
factorization algorithm that simulates the decomposition of A when a minimum degree
pivot strategy is applied. The algorithm operates on an undirected graph G = (V, E)
whose vertices V are labeled from 1 to |𝑉 |. G is defined by its adjacency list A. The
algorithm arrives at a symbolic factorization by eliminating vertices from G. Each stage
of the process creates a reduced graph G ′ = (V ′, E ′). The vertex v with the minimum
degree in G′ is chosen as the next elimination candidate. The algorithm describes the
structure of L, U, P, and Q in the following manner:

• The adjacency list A is augmented to account for fill-ups that will occur during
numeric factorization.

• A list L is created. The list orders the vertices in V according to a minimum
degree pivot strategy. If the vertices of V are labeled according to their position
in LU, a minimum degree ordering of V is generated.

• A mapping 𝜓 is created. The domain of 𝜓 is the initial label of vertex v. The
range of 𝜓 is the minimum degree label of v. That is, 𝜓(𝑣) is the minimum degree
label of v.

49

8.4 Symbolic Factorization of Sparse Matrices 8 SPARSE MATRICES

Algorithm 22: Symbolic Factorization of a Sparse Matrix †

for 𝑖 = 1, ⋯ , |𝑉 |
𝑣 = minimum_degree (𝑉 ′)
while [𝑤 =iterate (𝐴 , vertex 𝑣, 1, |𝑉 |, 𝑒)] ≠ finished

i f in_graph (𝑉 ′, 𝑤)
decrease_degree (𝑉 ′, 𝑤)
push_iteration

while [𝑧 =iterate (𝐴 , vertex 𝑣, 𝑤 + 1, |𝑉 |, 𝑒)] ≠ finished
𝑒.𝑓 𝑖𝑙𝑙𝑢𝑝 = true
i f insert (𝐴, 𝑧, 𝑤, 𝑒)

increase_degree (𝑉 ′, 𝑧)
insert (𝐴, 𝑤, 𝑧, 𝑒)
increase_degree (𝑉 ′, 𝑤)

pop_iteration

remove (𝑉 ′, 𝑣)
map (𝜓, 𝑣, 𝑖)
map (𝜏, 𝑖, 𝑣)
link (𝐿, 𝑣)

† Operations and data types are defined in Section 8.2.

• A mapping 𝜏 is created. The domain of 𝜏 is the the minimum degree label of
vertex v. The range of 𝜏 is the initial label of v. That is, if 𝑣 is the minimum
degree label of a vertex, 𝜏(𝑣) is the initial label of the vertex.

One field assosciated with edge eij in the adjacency list contains a binary variable in-
dicating whether edge (i,j) is a fill-up or not. The fill-up indicator is communicated
through the buffer e in the normal manner.
Algorithm 22 computes a symbolic factorization of G that consists of these four data
structures.
A few observations concerning the factorization procedure:

• The reduced graph G′ is tracked in data structures designed to model vertex
elimination–see Section 8.2.3 of this monograph and Section 8 (Vertex Elimina-
tion) of its companion Graph Algorithms for implementation details.

• The adjacency list A is augmented to log fill-ups but it is never diminished to
reflect graph reduction.

• If the algorithm is efficiently implemented, 𝜓 , 𝜏, and l can occupy space that is
vacated as G′ shrinks.

50

https://vismor.com/documents/network_analysis/graph_algorithms/S8.php
https://vismor.com/documents/network_analysis/graph_algorithms/S8.php

8.5 Creating PAPT from a Symbolic Factorization 8 SPARSE MATRICES

8.4.2 Computational Complexity of Symbolic Factorization

The complexity of the symbolic factorization is determined by the size of the adjacency
list. One iteration of the main loop requires 𝑒2−𝑒

2 adjacency list accesses, where e is the
number of edges incident upon vertex v. If all vertices in V have the same number of
incident edges, the total operation count is |𝑉 | 𝑒2−𝑒

2 . In this case, the time complexity
of symbolic factorization is 𝑂 (|𝑉 | 𝑒2) if all operations on the data structures are O(1).
Consider the following comparison of symbolic factorization operation counts to those
associated with the LU decomposition of a dense matrix. If a graph has 100 vertices
each of which has 5 incident edges, computing the symbolic factorization requires 1000
operations. Computing the dense factorization requires 661,650 operations. If the
number of vertices increases to 1000 while the incident edges per vertex remains con-
stant (the typical scenario in network analysis problems associated with electric power
systems), symbolic factorization requires 1 × 104 operations and dense matrix decompo-
sition requires 6 × 108 operations.

8.5 Creating PAPT from a Symbolic Factorization

Symbolic factorization determines the structure of L and U when the product PAQ
is decomposed. The current section examines a procedure for creating this product
directly when A does not exist. Pivoting down the diagonal of the resulting matrix
creates the LU decomposition predicted by symbolic factorization.
More specifically, the current section describes an algorithm which acts on the adja-
cency list A of an undirected graph G = (V, E) to create a matrix with symmetric sparsity
pattern that represents the product

𝐏𝐀𝐏𝐓

where

A is the sparse matrix that corresponds to the graph G.
P is the row permutation matrix corresponding to the minimum degree labeling
of V.

It is assumed that A has been expanded to accommodate fill-ups that will occur during
LU decomposition and that the permutation matrix P is implemented as

• A list L which traverses V in minimum degree order, and
• A mapping 𝜓 whose domain is the initial label of a vertex v from V (G) and whose

range is the minimum degree label of v. That is, 𝜓(𝑣) returns the minimum degree
label of v.

51

8.6 Numeric Factorization of Sparse Matrices 8 SPARSE MATRICES

Algorithm 23: Construct PAPT of a Sparse Matrix †

𝑣 = first (𝐿)
for 𝑖 = 1, ⋯ , |𝑉 |

while [𝑤 =iterate (𝐴 , vertex 𝑣, 1, |𝑉 |, 𝑒)] ≠ finished
i f 𝑒.𝑓 𝑖𝑙𝑙𝑢𝑝 is true

𝑎 = 0
e l s e

make_element (𝐀, 𝑣, 𝑤, 𝑎)
𝑗 = 𝜓 (𝑤)
insert (𝐏𝐀𝐏𝐓, 𝑖, 𝑗, 𝑎)

make_element (𝐀, 𝑣, 𝑣, 𝑎)
insert (𝐏𝐀𝐏𝐓, 𝑖, 𝑖, 𝑎)
𝑎 = row header
insert (𝐏𝐀𝐏𝐓, 𝑖, 0, 𝑎)
𝑣 = next (𝐿, 𝑣)

† Operations and data types are defined in Section 8.2.

Section 8.4.1 describes a procedure that creates the augmented adjacency list A and the
permutation matrix P in the desired form.
It is further assumed that both the adjacency list A and the matrix PAPT are maintained
in sparse data structures that support the scan and insert operators. The operation
make_element initializes element aij of sparse matrix A when its row and column in-
dices, i and j, are specified. Communication with the data structures is maintained
through buffers e and a in the normal manner.
Algorithm 23 constructs the full, asymmetric matrix PAPT based on these assumptions.
Zero valued entries are created for elements that will fill up during LU decomposition.
Algorithm 24 constructs the symmetric matrix PAPT. Zero valued entries are created
for elements that will fill upduring LU decomposition.

8.6 Numeric Factorization of Sparse Matrices

Numeric factorization algorithms work with nonzero values of a sparse matrix A and
the data structures resulting from symbolic factorization to compute the factorization

𝐋𝐔 = 𝐏𝐀𝐏𝐓

Algorithms discussed in the current section act on a sparse n × n matrix A. They assume
that

52

8.6 Numeric Factorization of Sparse Matrices 8 SPARSE MATRICES

Algorithm 24: Construct PAPT of a Sparse Symmetric Matrix †

𝑣 = first (𝐿)
for 𝑖 = 1, ⋯ , |𝑉 |

while [𝑤 =iterate (𝐴 , vertex 𝑣, 1, |𝑉 |, 𝑒)] ≠ finished
𝑗 = 𝜓 (𝑤)
i f 𝑗 > 𝑖

i f 𝑒.𝑓 𝑖𝑙𝑙𝑢𝑝 is true
𝑎 = 0

e l s e
make_element (𝐀, 𝑣, 𝑤, 𝑎)

insert (𝐏𝐀𝐏𝐓, 𝑖, 𝑗, 𝑎)
make_element (𝐀, 𝑣, 𝑣, 𝑎)
insert (𝐏𝐀𝐏𝐓, 𝑖, 𝑖, 𝑎)
𝑣 = next (𝐿, 𝑣)

† Operations and data types are defined in Section 8.2.

• A already reflects the pivot strategy defined by P and PT, i.e. the algorithms pivot
down the diagonal.

• A has zero-valued entries at fill-up locations.
• A is maintained in a sparse data structure supporting the get, scan, and put

operators. Communication with the data structure is maintained through the
buffer a in the normal manner.

Techniques for creating the requisite pivot ordered, fill-up augmented A matrix (i.e.
PAPT) are discussed in Section 8.5.
Algorithm 25 uses Doolittle’s method to compute the LU decomposition of a sparse
matrix A.The algorithm overwrites A with LU.
Algorithm 26 uses Doolittle’s method to compute U, the upper triangular factors, of a
symmetric sparse matrix A. It is assumed that A is initially stored as an upper triangular
matrix. The algorithm overwrites A with U. The vector w is used to construct the
nonzero entries of each column from U. The vector c contains cursors to the row in L
with which the entries of A are associated, e.g. if wk contains lji then ck is j.
Doolittle’s method for full, asymmetric matrices, is examined in Section 4.2. Doolittle’s
method for full, symmetric matrices is discussed in Section 7.4.

53

8.6 Numeric Factorization of Sparse Matrices 8 SPARSE MATRICES

Algorithm 25: LU Decomposition of a Sparse Matrix by Doolittle’s Method †

for 𝑖 = 2, ⋯ , 𝑛
while [𝑗 =scan (𝐀 , row 𝑖, 1, 𝑛, 𝑎)] ≠ finished

push_scan

𝛼 = 𝑎
𝑚 = min (𝑖 − 1, 𝑗 − 1)
while [𝑝 =scan (𝐀 , row 𝑖, 1, 𝑚, 𝑎)] ≠ finished

𝑏 = 𝑎
i f get (𝐀, 𝑝, 𝑗, 𝑎) is successful

𝛼 = 𝛼 − 𝑎𝑏
i f 𝑖 > 𝑗

get (𝐀, 𝑗, 𝑗, 𝑎)
𝛼 = 𝛼

𝑎
𝑎 = 𝛼
put (𝐀, 𝑖, 𝑗, 𝑎)
pop_scan

† Operations and data types are defined in Section 8.2.

Algorithm 26: LU Decomposition of Sparse Symmetric Matrix by Doolittle’s Method †

for 𝑖 = 1, ⋯ , 𝑛
𝑘 = 0
for 𝑗 = 1, ⋯ , 𝑖 − 1

i f get (𝐀, 𝑗, 𝑖, 𝑎) is successful
𝑘 = 𝑘 + 1
𝑤𝑘 = 𝑎
𝑐𝑘 = 𝑗
get (𝐀, 𝑗, 𝑗, 𝑎)
𝑤𝑘 = 𝑤𝑘

𝑎
while [𝑗 =scan (𝐀 , row 𝑖, 𝑖, 𝑛, 𝑎)] ≠ finished

𝛼 = 𝑎
for 𝑝 = 1, ⋯ , 𝑘

i f get (𝐀, 𝑐𝑝, 𝑗, 𝑎) is successful
𝛼 = 𝛼 − 𝑎𝑤𝑝

𝑎 = 𝛼
put (𝐀, 𝑖, 𝑗, 𝑎)

† Operations and data types are defined in Section 8.2.

54

8.7 Solving Sparse Linear Systems 8 SPARSE MATRICES

Algorithm 27: Permute b to order P
for 𝑖 = 1, ⋯ , 𝑛

𝑘 = 𝜓(𝑖)
𝑦𝑖 = 𝑏𝑘

8.7 Solving Sparse Linear Systems

As we have seen, the LU decomposition of the matrix PAQ is used to solve the linear
system of equations Ax = b by sequentially solving Equation 58 through Equation 61,
which are repeated below.

𝐲 = 𝐏𝐛
𝐋𝐜 = 𝐲
𝐔𝐳 = 𝐜

𝐱 = 𝐐𝐳

Sparsity techniques benefit this process. The algorithms presented in this section as-
sume:

• An LU decomposition of PAQ exists.
• The factorization is maintained in a sparse matrix data structure which supports

the scan and get operators. These operators are described in Section 8.2.1.
• The row permutations P are represented by a mapping 𝜓 whose domain is a row

index in A and whose range is the corresponding row index in PAQ.
• The column permutations Q are represented by a mapping 𝜏 whose domain is a

column index in PAQ and whose range is the corresponding column index in A.
For example, Section 8.6 describes algorithms that create numeric factorizations satis-
fying the first two of these assumptions. Section 8.4.1 describes an algorithm for ob-
taining the row and column permutations corresponding to a minimum degree pivot
strategy.
For simplicity of exposition, it is assumed that the vectors b, c, x, y, and z are stored in
linear arrays. However, any data structure that lets you retrieve and update an element
of a vector based on its index will suffice.

8.7.1 Permute the Constant Vector

The equation y = Pb is efficiently implemented using the mapping 𝜓 to permute the
elements of b. Algorithm 27 illustrates this procedure.

55

8.7 Solving Sparse Linear Systems 8 SPARSE MATRICES

Algorithm 28: Sparse Forward Substitution
for 𝑖 = 1, ⋯ , 𝑛

𝛼 = 𝑦𝑖
while [𝑗 =scan (𝐋 , row 𝑖, 1, 𝑖 − 1, 𝑙)] ≠ finished

𝛼 = 𝛼 − 𝑙𝑦𝑖
get (𝐋, 𝑖, 𝑖, 𝑙)
𝑐𝑖 = 𝛼

𝑙

Algorithm 29: Symmetric Sparse Forward Substitution
for 𝑖 = 𝑛, ⋯ , 1

𝑐𝑖 = 𝑦𝑖
get (𝐔, 𝑖, 𝑖, 𝑢)
𝛼 = 𝑐𝑖

𝑢
while [𝑘 =scan (𝐔 , row 𝑖, 𝑖 + 1, 𝑛, 𝑢)] ≠ finished

𝑦𝑘 = 𝑦𝑘 − 𝑢𝛼

8.7.2 Sparse Forward Substitution

The lower triangular system of equations Lc = y is solved by forward substitution. Algo-
rithm 28 implements the inner product formulation of forward substitution on a sparse
L and full vectors c and y.
The sequencing of the operations permits the use of a single vector y. Operations that
update ci would overwrite yi instead. If L is unit lower triangular, division by the diag-
onal element lii is omitted.
Algorithm 29 implements an outer product formulation of forward substitution for use
with symmetric systems whose upper triangular factors are available. See Section 5.3
and Section 7.6 for additional information.

8.7.3 Sparse Backward Substitution

The upper triangular system of equations Uz = c is solved by backward substitution.
Algorithm 30 implements the inner product formulation of backward substitution on
a sparse U and full vectors c and z.
The sequencing of the operations permits the use of a single vector c. Operations that
update zi would overwrite ci instead. If U is unit upper triangular, division by the diag-
onal element uii is omitted.

56

8.8 Sparse LU Factor Update 8 SPARSE MATRICES

Algorithm 30: Sparse Back Substitution
for 𝑖 = 𝑛, ⋯ , 1

𝛼 = 𝑐𝑖
while [𝑗 =scan (𝐔 , row 𝑖, 𝑖 + 1, 𝑛, 𝑢)] ≠ finished

𝛼 = 𝛼 − 𝑢𝑧𝑗
get (𝐔, 𝑖, 𝑖, 𝑢)
𝑧𝑖 = 𝛼

𝑢

Algorithm 31: Permute x to order Q
for 𝑖 = 1, ⋯ , 𝑛

𝑘 = 𝜏(𝑖)
𝑥𝑖 = 𝑧𝑘

8.7.4 Permute the Solution Vector

The equation x = Qz is efficiently implemented using the mapping 𝜏 to permute the
elements of z. Algorithm 31 illustrates this process.

8.8 Sparse LU Factor Update

If the LU decomposition of the sparse product PAQ exists and the factorization of a
related matrix

𝐏𝐀′𝐐 = 𝐏(𝐀 + 𝚫𝐀)𝐐 (94)

is desired, factor update is at times the procedure of choice. The current section ex-
amines procedures for updating the sparse factorization of PAQ following a rank one
modification of A, that is

𝐀′ = 𝐀 + 𝛼𝐲𝐳𝐓 (95)

where 𝛼 is a scalar, y and z are n vectors, and A′ has the same sparsity pattern as A.
The condition on the structure of A′ is not imposed by the factor update process, but
is instead a comment on the utility of factor update in a sparse environment. If the
modification to A introduces new elements into the matrix, the pivot sequence deter-
mined during symbolic factorization may no longer apply. The sparsity degradation
introduced by an inappropriate pivot sequence may outweigh the benefits gained from
the updating the existing factorization.
The performance of factor update algorithms is often enhanced by restricting pivot op-
erations to the portions of L and U that are directly effected by the change in A. Papers

57

8.8 Sparse LU Factor Update 8 SPARSE MATRICES

Algorithm 32: Factorization Path
while 𝑖 ≠ finished

𝑗 = scan (𝐔, row 𝑖, 𝑖 + 1, 𝑛, 𝑢)
𝑘 = scan (𝐋, column 𝑖, 𝑖 + 1, 𝑛, 𝑙)
𝑖 = min (𝑗, 𝑘)

Algorithm 33: Symmetric Factorization Path
while 𝑖 ≠ finished

𝑖 = scan (𝐔, row 𝑖, 𝑖 + 1, 𝑛, 𝑢)

by Tinney, Brandwajn, and Chan (1985) and Chan and Brandwajn (1986) describe a sys-
tematic methodology for determining this subset of LU. The rows of U and columns in
L that are changed during factor update are referred to as the factorization path. The
fundamental operation is to determine the factorization path associated with a vector
y with just one nonzero element. Such a vector is called a singleton. Its factorization
path is called a singleton path. If more than one of the elements in y are nonzero, the
composite factorization path is simply the union of the singleton paths.

8.8.1 Factorization Path of a Singleton Update

If the LU decomposition of PAQ is stored as an asymmetric sparse matrix and a single-
ton vector y has one nonzero element at location i, its factorization path through LU
is determined by Algorithm 32. Each value ascribed to i by Algorithm 32 is a vertex on
the factorization path of y.
In words, Algorithm 32 starts at uii (the diagonal element in U corresponding to the
nonzero element in y) and looks to the right until it finds the first nonzero element
uij. It then starts at element lii and looks down column i of L until it finds a nonzero
element lik. The value of i is then reset to the smaller of j or k and the process is repeated
for the next uii and lii. The procedure ends when there are no elements to the right of
the diagonal in U or below the diagonal in L for some vertex on the factorization path.
Obviously, it is assumes that a column scan is independent of a row scan but works in a
similar manner.
If the LU decomposition of PAPT has a symmetric sparsity pattern Algorithm 32 sim-
plifies to Algorithm 33.
The symmetry makes the search through column i of L unnecessary. In Algorithm 33,
the use of U to determine the factorization path was arbitrary. Either L or U can anchor
the process.

58

9 IMPLEMENTATION NOTES

8.8.2 Revising LU after a Singleton Update

Algorithm 34 updates a structurally symmetric LU factorization after a rank one mod-
ification to A. It assumes:

• L is unit lower triangular and maintained in a sparse data structure that commu-
nicates using the buffer l.

• U is upper triangular and maintained in a sparse data structure that communicates
using the buffer u.

• The sparse data structure does not permit a column scan.
• The y vector is full and all entries are zero except yi.
• The z vector is full.
• The product yzT has the same sparsity structure as A.
• The y and zT vectors have been permuted by P and PT so they are in the same

frame of reference as L and U.
The requirement that L and U occupy different data structures in Algorithm 34 is
pedantic. In practice, L will occupy the subdiagonal portion of a sparse matrix and
U will occupy the diagonal and superdiagonal portions of the same matrix.
If A is symmetric, y = z, and A′ has the same sparsity pattern as A, Algorithm 34 sim-
plifies to Algorithm 35.

9 Implementation Notes

This document concludes with a brief discussion of an experimental implementation
of sparse matrix algorithms in a highly cached database environment. It was written
as part of the documentation of an experimental project, from a bygone era, which
proceeded along these lines.
The relevance of the material in his section to current readers is debatable since it
examines software implementations for machine architectures that are no longer in use
(or available). Nonetheless, some aspects of the discussion are still pertinent despite
changes in the execution environment. For this reason and for the sake of completeness,
it was decided to retain the information in this monograph. Do with it as you like.

9.1 Sparse Matrix Representation

Data structures used to maintain sparse matrices must provide access to the nonzero
elements of a matrix in a manner which facilitates efficient implementation of the algo-
rithms that are examined in Section 8. The current sparse matrix implementation also
seeks to support a high degree of generality both in problem size and the definition of

59

9.1 Sparse Matrix Representation 9 IMPLEMENTATION NOTES

Algorithm 34: Structurally Symmetric Sparse LU Factor Update
while 𝑖 ≠ finished

get (𝐔, 𝑖, 𝑖, 𝑢)
𝛿 = 𝑢
𝑝 = 𝑦𝑖
𝑞 = 𝑧𝑖
𝑢 = 𝑢 + 𝛼𝑝𝑞
put (𝐔, 𝑖, 𝑖, 𝑢)
𝛽1 = 𝛼𝑝

𝑢
𝛽2 = 𝛼𝑞
𝑞 = 𝑞

𝛿
𝛿 = 𝑢

𝛿
𝛼 = 𝛼

𝛿
𝑘 = finished
while [𝑗 =scan (𝐔, row 𝑖, 𝑖 + 1, 𝑛, 𝑢)] ≠ finished

i f 𝑗 is first element on row 𝑖
𝑘 = 𝑗

𝑧𝑗 = 𝑧𝑗 − 𝑞𝑢
𝑢 = 𝛿𝑢 + 𝛽2𝑧𝑗
put (𝐔, 𝑖, 𝑗, 𝑢)
get (𝐋, 𝑗, 𝑖, 𝑙)
𝑦𝑗 = 𝑦𝑗 − 𝑝𝑙
𝑙 = 𝑙 + 𝛽1𝑦𝑗
put (𝐋, 𝑗, 𝑖, 𝑙)

𝑖 = 𝑘

a matrix element. Among other things, this implies that the algorithms must be able to
solve problems that are too large to fit into core. A Blink tree supported by a data base
cache (described elsewhere, see also Lehman and Yao (1981)) is one possible vehicle for
this task. Simply put, the fundamental sparse matrix data structure is:

• Each matrix is a relation in a data base, and
• Each nonzero element of a matrix is a tuple in a matrix relation.

Matrix tuples have the structure indicated in Figure 4.
The row and column domains of each tuple constitute a compound key to the matrix
relation. Their meaning corresponds to the standard dense matrix terminology.
The description of a matrix element is left intentionally vague. Its definition varies
with the application. Matrix elements must include a real number, double precision real

60

9.1 Sparse Matrix Representation 9 IMPLEMENTATION NOTES

Algorithm 35: Symmetric Sparse LU Factor Update
while 𝑖 ≠ finished

get (𝐔, 𝑖, 𝑖, 𝑢)
𝛿 = 𝑢
𝑝 = 𝑦𝑖
𝑢 = 𝑢 + 𝛼𝑝2

put (𝐔, 𝑖, 𝑖, 𝑢)
𝛽 = 𝛼𝑝

𝑢
𝑞 = 𝑞

𝛿
𝛿 = 𝑢

𝛿
𝛼 = 𝛼

𝛿
𝑘 = finished
while [𝑗 =scan (𝐔,row 𝑖, 𝑖 + 1, 𝑛, 𝑢)] ≠ finished

i f 𝑗 is first element on row 𝑖
𝑘 = 𝑗

𝑦𝑗 = 𝑦𝑗 − 𝑝𝑢
𝑢 = 𝛿𝑢 + 𝛽𝑧𝑗
put (𝐔, 𝑖, 𝑗, 𝑢)

𝑖 = 𝑘

Figure 4: Matrix Tuple Structure

row column matrix element

number, complex number, or any other entity for which the arithmetical operations of
addition, subtraction, multiplication, and division are reasonably defined.
In this context, matrix elements are accessed through high level data base operations:

• Get retrieves a random tuple.
• Next retrieves tuples sequentially. You will recall that the scan operator (defined

in Section 8.2.1 and Section 8.2.2) is used extensively by sparse matrix algorithms
in Section 8. Scan is implemented by embellishing the next primitive.

• Put updates the non-key portions of an existing tuple.
• Insert adds a new tuple to a relation.
• Delete removes an existing tuple from a relation.

61

9.1 Sparse Matrix Representation 9 IMPLEMENTATION NOTES

This data structure places few constraints on the representation of a matrix. However,
several conventions are adopted to facilitate consistent algorithms and efficient cache
access:

• Matrices have one-based indexing, i.e. the row and column indices of an n × n
matrix range from 1 to n.

• Column zero exists for each row of an asymmetric matrix. Column zero serves as a
row header and facilitates row operations. It does not enter into the calculations.

• A symmetric matrix matrix is stored as an upper triangular matrix. In this repre-
sentation, the diagonal element anchors row operations as well as entering into
the computations. Column zero is not used for symmetric matrices.

Figure 5 depicts the data structure associated with sparse matrices.

Figure 5: Sparse Matrix Representation

Column 0 Column 1 Column 2 Column n...

Column 1 Column 2 Column 3 Column n...

Asymmetric Matrix

Symmetric Matrix

Row 1
Row 2
Row 3
Row 4
Row 5
Row 6

Row n
...

Row 1
Row 2
Row 3

Row n

......

...

62

9.2 Database Cache Performance 9 IMPLEMENTATION NOTES

9.2 Database Cache Performance

When matrix algorithms are implemented in a relational environment, database ac-
cess requirements can play a significant (if not dominating) role in an algorithm’s time
complexity. The current section examines the theoretical and empirical performance
characteristics of a Blink tree (see Lehman and Yao (1981)) supported by an in-core cache
with a LRU paging discipline. The operators described in the previous section form
the basis of the discussion.

9.2.1 Sequential Matrix Element Retrieval

The time complexity of next is O(1), since next just looks up a virtual address (no
search is involved). A next operation requires one cache access. No key comparisons
are necessary. An additional cache access is required to obtain the non-key portion of
the tuple.

9.2.2 Arbitrary Matrix Element Retrieval

The time complexity of get is O(log n) where n is the number of tuples in the relation.
A get operation is implemented by a current tree search. When the key to a sparse
matrix is four bytes long, the current tree of the matrix is a 31–61 tree. Interpolating
the tables found in Gonnet (1984) yields:

• The expected height of a 10,000 key current tree (i.e. number of nodes searched)
is three.

• The average node to key ratio of a 10,000 key current tree is 0.02904. Hence,
the average node will contain 34.43 keys.

Each descending branch in a current tree search is determined through a binary search
of a tree node. The maximum number of key comparisons needed to search a node in
this manner is log2 k, where k is the number of keys in the node. Therefore, it will take
no more than 5.1 comparisons to locate the appropriate tree branch in an average 35 key
node.
These observations imply that no more than 3 cache lookups and 16 key comparisons
are required to locate an entry in a 10,000 key current tree. An additional cache access
is required to obtain the non-key portions of the tuple.

9.2.3 Arbitrary Matrix Element Update

If the address of the non-key portion of a tuple is known, put is an O(1) operation
requiring a single cache access. If the address is not known put is equivalent to a get –
O(log n) – followed by a direct cache access.

63

9.2 Database Cache Performance 9 IMPLEMENTATION NOTES

9.2.4 Matrix Element Insertion

The time complexity of insert is O(log n) where n is the number of tuples in the
relation. An insert operation is equivalent to a put operation unless the tree splits.
Interpolating the tables in Gonnet (1984) yields:

• The average number of splits for the n+1st insertion into a 10,000 key 31–61 tree is
approximately 0.02933, i.e. the tree will split each time 33.40 items are inserted
(on the average).

Splitting increases the constant associated with the growth rate slightly. It does not
increase the growth rate per se.

9.2.5 Matrix Element Deletion

Deleting a key from a Blink tree is analogous to inserting one, except tree nodes occa-
sionally combine instead of splitting. Therefore, the time complexity of delete is O(log
n) like insertion.

9.2.6 Empirical Performance Measurements

The measurements in Table 1 provide empirical performance statistics for various data
base operations. The measurements were made on a 16 Mhz IBM PS/2 Model 70 with
a 16 Mhz 80387 coprocessor and a 27 msec, 60 Mbyte fixed disk drive (do you think
the hardware is a bit dated? I suspect many readers have only seen this hardware in a
museum — if at all). You should note two characteristics of the measurements:

• The cache was large enough to hold the entire Blink tree of relations A, B, and C.
There are no cache faults to disk in these measurements. The relation D was too
big to fit in core. Its next times reflect numerous cache faults.

• The get operation looked for the same item during each repetition. This is ex-
plains the lack of cache faults while relation D was processed. Once the path to
the item was in core it was never paged out.

Neglecting cache faults, the time required to find a tuple is a function of two variables:
the size of the relation and the size of the key. The number of tuples in a relation
determines the number of comparisons that are made. The size of the key effects the
amount of work required to perform each comparison. Comparing the “get relation D”
measurements of Table 1 to the “get relation C” measurements provides an indication
of the actual effect of a relation’s size on search time (since both relations have the same
size key). Note that

2, 520 𝜇sec
2, 165 𝜇sec

≈ 1.167

64

9.2 Database Cache Performance 9 IMPLEMENTATION NOTES

Table 1: Database Cache Benchmarks

Repetitions
30k 50k 100k 200k Average

Operation (seconds) (seconds) (seconds) (seconds) (𝜇sec)
Relation A 1

Next n/a 12 25 51 255
Get n/a 26 52 103 515
Relation B 2

Next 7 12 24 47 235
Get 34 57 114 228 1,140
Relation C 3

Next 7 12 24 49 245
Get 65 108 216 433 2,165
Relation D 4

Next 48 82 164 n/a 1,640
Cache faults 2,058 3,541 7,095
Get 76 126 252 n/a 2,520
Cache faults 1 1 1

1 112 tuples, 2 byte key.
2 463 tuples, 4 byte key.
3 673 tuples, 22 byte key.
4 10,122 tuples, 22 byte key.

which is below the theoretical bound
log2 10, 122

log2 673 ≈ 13.31
9.40 ≈ 1.416

Comparing “get relation C” to “get relation B” gives a good feel for the impact of key
size. The size of the relation should not have much impact on the search time discrep-
ancies since

log2 673
log2 463 ≈ 9.40

8.87 ≈ 1.060

The next operation was metered by repeatedly scanning a relation until the desired
number of operations was achieved. Each time the end of a relation was encountered
the scan was restarted. The high nextmeasurement for relation A probably reflects the
overhead of many loop starts and stops (since there were only 12 tuples in the relation).
The elevated next time of the relation C is probably due to key length. After all the
keys on a cache page are processed, a relatively expensive page fault occurs. Larger

65

9.3 Floating Point Performance 9 IMPLEMENTATION NOTES

keys cause the cache page to change more frequently. Given that the in-core next

observations have a mean of 240 𝜇sec and a standard deviation of 10 𝜇sec, the effects
of these peripheral processes appear to be relatively insignificant.
In summary, Table 1 shows that the O(1) operations have an empirical time advantage
that ranges from 1.54/1 to 8.84/1 over the O(log n) operations. This observation un-
derscores the importance of tailoring algorithmic implementations to take advantage
of the O(1) operators. In practical terms, his means that sequential access and stack
operations are preferred to direct random access.

9.3 Floating Point Performance

Note. This section contains data that is so antiquated that we’re not sure it has much relevance to
modern hardware configurations. It is included for the sake of completeness and as a historical curios-
ity.

Table 2: Floating Point Benchmarks

With 80387 No 80387
Repetitions Average Repetitions Average

2,000k Time 200k Time
Operation (seconds) (𝜇sec) (seconds) (𝜇sec)
Add 25.9 13.0 34.3 172
Subtract 25.9 13.0 35.3 177
Multiply 28.4 14.2 44.3 222
Divide 33.6 16.8 50.9 255
Inner product 1 40.3 20.2 61.9 310
Scalar multiply 2 30.2 15.1 45.0 225
Loop overhead 1.3 1.3

1 sum + = a[cursor[i]] * y[cursor[j]]
2 a[cursor[i]] * = scalar

A variety of floating point operations were monitored under MS DOS version 3.30 on a
16 Mhz IBM PS/2 Model 70 with a 16 Mhz 80387 coprocessor and a 27 msec, 60 Mbyte
fixed disk drive. The 32 bit operations available on the 80386 were not used. Table 2
catalogs the time requirements of the simple arithmetical operations, inner product
accumulation, and multiplying a vector by a scalar. All benchmarks were performed
using double precision real numbers. The test contains a loop that was restarted after
every 500 operations, e.g. 200k repetitions also includes the overhead of starting and

66

9.4 Auxiliary Store 9 IMPLEMENTATION NOTES

stopping a loop 400 times. With this testing scheme, all loop counters and array indices
were maintained in the registers.
The measurements in Table 3 provide a similar analysis of math functions in the Mi-
crosoft C Version 5.1 math library. These benchmarks were conducted with a single
loop whose counter was a long integer.

Table 3: Math Library Benchmarks

With 80387 No 80387
Repetitions Average Repetitions Average

300k Time 10k Time
Function (seconds) (𝜇sec) (seconds) (𝜇sec)
acos 36.2 121 30.5 3,050
asin 35.1 117 29.9 2,990
atan 26.0 87 23.0 2,300
cos 37.7 126 25.3 2,530
sin 37.0 123 24.7 2,470
tan 31.7 106 19.2 1,920
log 25.4 85 18.5 1,850
sqrt 16.5 55 5.7 570
pow 51.4 171 38.6 3,860
j0 1 235.1 784 60.7 6,070
j6 662.02 2,207 176.3 17,603
y0 3 510.02 1,700 146.4 14,640
Loop overhead 3 3

1 Bessel function of the first kind, order 0.
2 Extrapolated from 30,000 repetitions.
3 Bessel function of the second kind, order 0.

Differences in loop overheads found in Table 2 and Table 3 are accounted for by the
differences in the loop counter implementation described above. The 3 𝜇sec overhead
reflects the time required to increment a long integer and monitor the termination con-
dition (which also involved a long integer comparison). The 1.3 𝜇sec overhead reflects
the time required to increment a register and monitor the termination condition (which
involved a register comparison).

9.4 Auxiliary Store

A data structure referred to as the auxiliary store is provided to support temporary
information that is required by matrix algorithms but not stored in the matrix relations

67

9.4 Auxiliary Store 9 IMPLEMENTATION NOTES

themselves. The auxiliary store is implemented in a manner that takes advantage of
unused heap space at execution time. If the heap is big enough to accommodate the
entire auxiliary store, an array of structures is allocated and the store is maintained in
core. If available heap space is inadequate, a relation is allocated and the auxiliary store
is maintained in the database cache. Access to the in-core version of the auxiliary store
requires 13.8 𝜇sec. Heap access time does not vary with the size of the store.

68

REFERENCES REFERENCES

References

Bennett, J. (1965). “Triangular Factors of Modified Matrices”. In: Numerische Mathematik
7, pp. 217–221 (cit. on p. 32).

Chan, S. and V. Brandwajn (1986). “Partial matrix refactorization”. In: IEEE Transactions
on Power Systems 1.1, pp. 193–200 (cit. on pp. 32, 58).

Conte, S. and C. de Boor (1972). Elementary Numerical Analysis. New York: McGraw-Hill
Book Company (cit. on pp. 20, 24).

Duff, I. S., A. M. Erisman, and J. K. Reid (1986). Direct Methods for Sparse Matrices. Oxford:
Clarendon Press (cit. on pp. 17, 20, 43, 48).

Fox, L. (1964). An Introduction to Numerical Linear Algebra. Oxford: Clarendon Press (cit.
on p. 17).

George, Alan and Joseph W.H. Liu (1981). Computer Solutions of Large Sparse Positive Definite
Systems. Engle Wood Cliffs, New Jersey: Prentice-Hall. isbn: 9780131652743 (cit. on
pp. 29, 49).

Gill, P. et al. (1974). “Methods for Modifying Matrix Factorizations”. In: Mathematics of
Computation 28.126, pp. 505–535 (cit. on pp. 32, 40).

Golub, Gene H. and Charles F. van Van Loan (1983). Matrix Computations. Baltimore:
Johns Hopkins University Press (cit. on pp. 17, 18, 24).

Gomez, A. and L. Franquelo (1988a). “An efficient ordering algorithm to improve sparse
vector methods”. In: IEEE Transactions on Power Systems 3.4, pp. 1538–1544 (cit. on
p. 49).

— (1988b). “Node ordering algorithms for sparse vector method improvement”. In:
IEEE Transactions on Power Systems 3.1 (cit. on p. 49).

Gonnet, G. (1984). Handbook of Algorithms and Data Structures. Reading, Massachusetts:
Addison-Wesley (cit. on pp. 63, 64).

Hager, W. (1989). “Updating the Inverse of A Matrix”. In: SIAM Review 31.2, pp. 221–239
(cit. on p. 32).

Lehman, P. and B. Yao (1981). “Efficient Locking for Concurrent Operations on B-
Trees”. In: ACM Transaction on Database Systems 6.4, pp. 650–669 (cit. on pp. 60, 63).

Press, W. H. et al. (1988). Numerical Recipes in C. Cambridge and New York: Cambridge
University Press. isbn: 9780521354660 (cit. on pp. 17, 24).

Rose, D. and R. Tarjan (1975). “Algorithmic aspects of vertex elimination”. In: pp. 245–
254 (cit. on p. 47).

Tinney, W., V. Brandwajn, and S. Chan (1985). “Sparse vector methods”. In: IEEE Trans-
actions on Power Apparatus and Systems 104.2 (cit. on pp. 29, 58).

Tinney, W. and C. Hart (1972). “Power flow solution by Newton’s method”. In: IEEE
Transactions on Power Apparatus and Systems 86.6 (cit. on pp. 42, 43, 49).

Tinnney, W. and J. Walker (1967). “Direct solutions of sparse network equations by op-
timally ordered triangular factorization”. In: Proceedings of the IEEE 55.11, pp. 1801–
1809 (cit. on p. 22).

69

	Matrix Nomenclature
	Matrix Algebra
	Matrix Equality
	Matrix Transposition
	Scalar Multiplication
	Matrix Addition
	Matrix Multiplication
	Inverse of a Matrix
	Rank of a Matrix
	Similarity Transformations
	Partitioning a Matrix

	Linear Systems
	Solving Fully Determined Systems
	Solving Underdetermined Systems
	Solving Overdetermined Systems
	Computational Complexity of Linear Systems

	LU Decomposition
	Gaussian Elimination
	Doolittle's LU Factorization
	Crout's LU Factorization
	LDU Factorization
	Numerical Instability During Factorization
	Pivoting Strategies for Numerical Stability
	Diagonal Dominance and Pivoting
	Partial Pivoting
	Complete Pivoting
	Computational Complexity of Pivoting
	Scaling Strategies

	Solving Triangular Systems
	Forward Substitution
	Backward Substitution
	Outer Product Formulation

	Factor Update
	LDU Factor Update
	LU Factor Update
	Additional Considerations

	Symmetric Matrices
	LDU Decomposition of Symmetric Matrices
	LU Decomposition of Symmetric Matrices
	Symmetric Matrix Data Structures
	Doolittle's Method for Symmetric Matrices
	Crout's Method for Symmetric Matrices
	Forward Substitution for Symmetric Systems
	Forward Substitution Using Lower Triangular Factors
	Forward Substitution Using Upper Triangular Factors

	Backward Substitution for Symmetric Systems
	Back Substitution Using Upper Triangular Factors
	Back Substitution Using Lower Triangular Factors

	Symmetric Factor Update
	Symmetric LDU Factor Update
	Symmetric LU Factor Update

	Sparse Matrices
	Sparse Matrix Methodology
	Abstract Data Types for Sparse Matrices
	Sparse Matrix
	Adjacency List
	Reduced Graph
	List
	Mapping
	Vector

	Pivoting To Preserve Sparsity
	Markowitz Pivot Strategy
	Minimum Degree Pivot Strategy

	Symbolic Factorization of Sparse Matrices
	Symbolic Factorization with Minimum Degree Pivot
	Computational Complexity of Symbolic Factorization

	Creating PAPT from a Symbolic Factorization
	Numeric Factorization of Sparse Matrices
	Solving Sparse Linear Systems
	Permute the Constant Vector
	Sparse Forward Substitution
	Sparse Backward Substitution
	Permute the Solution Vector

	Sparse LU Factor Update
	Factorization Path of a Singleton Update
	Revising LU after a Singleton Update

	Implementation Notes
	Sparse Matrix Representation
	Database Cache Performance
	Sequential Matrix Element Retrieval
	Arbitrary Matrix Element Retrieval
	Arbitrary Matrix Element Update
	Matrix Element Insertion
	Matrix Element Deletion
	Empirical Performance Measurements

	Floating Point Performance
	Auxiliary Store

