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Abstract

This document describes an overhead transmission line model that is useful for
the analysis of large scale electric power systems. It establishes practical techniques
for computing the series impedance and shunt admittance of arbitrary conduc-
tor configurations. Consideration is given to computational aspects of computing
transmission line impedance parameters.

Copyright © 1990-2015 Timothy Vismor



CONTENTS LIST OF FIGURES

Contents
1 Introduction 3

2 Series Impedance 3
2.1 Carson’s Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1.1 Approximation of P and Q in Carson’s Equations . . . . . . . . . 5
2.1.2 Accuracy of Approximations to P and Q . . . . . . . . . . . . . . 5
2.1.3 Use of First Order Approximations to P and Q . . . . . . . . . . 7

2.2 Impedance of an N Conductor Transmission Line . . . . . . . . . . . . . 8
2.3 Series Impedance Computations . . . . . . . . . . . . . . . . . . . . . . . 8

2.3.1 Computation of k in the Series Approximation to P and Q . . . . 8
2.3.2 Constants in the P and Q Terms of Carson’s Equations . . . . . . 9
2.3.3 Unit Conversions Associated With GMR Terms . . . . . . . . . 10

3 Shunt Admittance 10
3.1 Linear Charge Density Along a Single Conductor . . . . . . . . . . . . . 11
3.2 Capacitance of N Conductors . . . . . . . . . . . . . . . . . . . . . . . . 11
3.3 Shunt Admittance and Reactance Matrices . . . . . . . . . . . . . . . . . 12
3.4 Shunt Admittance Computations . . . . . . . . . . . . . . . . . . . . . . 13

3.4.1 Potential Coefficient Unit Conversions . . . . . . . . . . . . . . . 13
3.4.2 Self Potential Unit Conversions . . . . . . . . . . . . . . . . . . . 13

4 Units of Measure 14

List of Tables
1 Range of the Constant k . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2 Impedance Unit Conversions . . . . . . . . . . . . . . . . . . . . . . . . . 15

List of Figures
1 Transmission Line Geometry . . . . . . . . . . . . . . . . . . . . . . . . . 6

2



2 SERIES IMPEDANCE

1 Introduction

Transmission and distribution lines consist of an arbitrary spatial arrangement of one or
more conductors. Information about these conductors is transformed into parameters
required for power system analysis as follows:

• The fundamental data consists of a description of each conductor and how the
conductors are arranged on their support structures.

• Conductor and spacing information is converted into an impedance matrix rep-
resenting the self and mutual impedances of the complete configuration.

• The impedance matrix is reduced to eliminate elements that are not required by
the analysis.

• The reduced impedance matrix is converted to symmetrical components when
sequence impedances are required.

If sequence impedances are the only available information, they can be transformed
into a reduced impedance matrix.
The remainder of this document examines the first two stages of this modeling process
in detail. That is, we examine techniques for transforming conductor parameters and
configuration data into impedance and capacitance matrices. The analysis is limited to
overhead transmission lines.

2 Series Impedance

The series impedance of an overhead transmission line is primarily a function of fre-
quency, conductor resistance, conductor geometry, line geometry, and earth conduc-
tivity. In the fundamental work on the subject, Carson (1923) developed equations for
the self impedance of a conductor with earth return and the mutual impedance of two
conductors with common earth return. These equations have been discussed and elab-
orated upon many times over the years. Wagner and Evans (1933), Clarke (1943), and An-
derson (1987) provide excellent complementary discussions of the topic. The current
formulation of the problem draws from each of these sources but follows the exposition
of Clarke (1943) most closely.
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2.1 Carson’s Equations 2 SERIES IMPEDANCE

2.1 Carson’s Equations

Carson’s formulas are

𝐙𝐢𝐢−𝐠 = 𝑟𝑖 + 𝑗2𝜔𝑙𝑛 (
2ℎ𝑖

𝑔𝑚𝑟𝑖 )
+ 4𝜔(𝑃 + 𝑗𝑄) (1)

𝐙𝐢𝐣−𝐠 = 𝑗2𝜔𝑙𝑛 (
𝐷𝑖𝑗

𝑑𝑖𝑗 ) + 4𝜔(𝑃 + 𝑗𝑄) (2)

where

Zii–g is the self-impedance of conductor i with ground return.
Zij–g is the mutual impedance between conductors i and j with common ground
return.
gmri is the effective radius (or geometric mean radius) of conductor i in centimeters.
hi is the height of conductor i in centimeters.
ri is the internal resistance of conductor i.
dij the distance between conductors i and j in centimeters.
Dij the distance between conductor i and the image of conductor j in centimeters.
𝜔 is 2𝜋f, where f is the frequency in cycles per second.

Obviously, the self-impedance Zii–g and mutual impedance Zij–g can be decomposed
into their real and imaginary components

𝐙𝐢𝐢−𝐠 = 𝑅𝑖𝑖−𝑔 + 𝑗𝑋𝑖𝑖−𝑔 (3)
𝐙𝐢𝐣−𝐠 = 𝑅𝑖𝑗−𝑔 + 𝑗𝑋𝑖𝑗−𝑔 (4)

Collecting terms in Equation 1 and Equation 2 and comparing to Equation 3 and Equa-
tion 4, it is apparent that

𝑅𝑖𝑖−𝑔 = 𝑟𝑖 + 4𝜔𝑃 (5)
𝑅𝑖𝑗−𝑔 = 4𝜔𝑃 (6)

𝑋𝑖𝑖−𝑔 = 2𝜔𝑙𝑛 (
2ℎ𝑖

𝑔𝑚𝑟𝑗 ) + 4𝜔𝑄 (7)

𝑋𝑖𝑗−𝑔 = 2𝜔𝑙𝑛 (
𝐷𝑖𝑗

𝑑𝑖𝑗 ) + 4𝜔𝑄 (8)

(9)
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2.1 Carson’s Equations 2 SERIES IMPEDANCE

2.1.1 Approximation of P and Q in Carson’s Equations

The P and Q terms in the preceding equations are defined by Carson as an infinite
series expressed in terms of two parameters, call them k and 𝜃. The form of P and Q
are the same for Equation 1 and Equation 2. However, the value of k and 𝜃 differ. For
self impedances

𝑘 = 4𝜋ℎ𝑖√2𝜆𝑓 (10)
𝜃 = 0 (11)

For mutual impedances

𝑘 = 2𝜋𝐷𝑖𝑗√2𝜆𝑓 (12)

𝜃 =
𝑐𝑜𝑠−1(ℎ𝑖 + ℎ𝑗)

𝐷𝑖𝑗
(13)

where

𝜆 is the earth conductivity in ab℧/cm3.
𝜃 is the angle defined in Figure 1.

Figure 1 defines the line geometry associated with Equation 10 through Equation 13.
The first few terms of the expansion of P and Q follow:

𝑃 =𝜋
8 − 𝑘cos 𝜃

3√2
+ 𝑘2

cos(2𝜃)(0.6728 + ln( 2
𝑘))

16 + 𝑘2 𝜃 sin (2𝜃)
16 (14)

+ 𝑘3 cos (3𝜃)
45√2

− 𝑘4 𝜋 cos (4𝜃)
1536

𝑄 = − 0.0386 + 1
2𝑙𝑛 (

2
𝑘) + 𝑘cos 𝜃

3√2
− 𝜋𝑘2 cos (2𝜃)

64 (15)

+ 𝑘3 cos (3𝜃)
45√2

− 𝑘4 sin (4𝜃)
384 − 𝑘4

cos(4𝜃)(1.0895 + ln( 2
𝑘))

384

2.1.2 Accuracy of Approximations to P and Q

Clarke (1943) states that Equation 14 and Equation 15 exhibit less than one percent error
for values of k up to one. Table 1 shows the wide applicability of these expressions for
fundamental and harmonic analysis of power systems by examining values of k for a
range of geometries, frequencies, and resistivities.
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Figure 1: Transmission Line Geometry
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Table 1: Range of the Constant k

Distance Frequency Earth Resistivity k

100 ft 60 Hz 10 Ω/m3 0.4196
660 Hz 1.3916
1020 Hz 1.7300

60 Hz 100 Ω/m3 0.1327
660 Hz 0.4401
1020 Hz 0.5471

60 Hz 1000 Ω/m3 0.0419
660 Hz 0.1391
1020 Hz 0.1730

100 ft - Large double circuit transmission tower
10 Ω/m3 - Resistivity of swampy ground
100 Ω/m3 - Resistivity of average damp earth
1000 Ω/m3 - Resistivity of dry earth

2.1.3 Use of First Order Approximations to P and Q

At 60 Hz, it is common practice to ignore the higher order terms of the expansion of
P and Q, i.e. let

𝑃 = 𝜋
8

𝑄 = −0.0386 + 1
2𝑙𝑛 (

2
𝑘)

This practice effectively decouples the series impedance from the conductor’s height
above ground. According to Wagner and Evans (1933), this omission tends to over-
state the computed resistance and understate the computed reactance. At commer-
cial frequencies and low earth resistivities (𝜌=10), the first order approximations may
introduce resistance errors in the neighborhood of 10 per cent. Under similar circum-
stances, self reactance errors rarely exceed one per cent. However, mutual reactance
errors are more volatile. For 𝜌=10, f =60, and Dij=200 feet, the low order approximation
of Q understates the mutual reactance by much as 4 per cent. At higher harmonics,
these tendencies are magnified.
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2.2 Impedance of an N Conductor Transmission Line

The two conductor problem of Section 2.1 can be generalized to a group of n conductors
with a common ground return. If currents i1, i2, …, in are flowing through the conduc-
tors, the voltage drop along conductor i is

𝐕𝐢 = 𝑖1𝑍𝑖1−𝑔 + ⋯ + 𝑖𝑖𝑍𝑖𝑖−𝑔 + ⋯ + 𝑖𝑛𝑍𝑖𝑛 (16)

Similar equations can be constructed for all conductors in the group. Expressing the
complete set of n voltage drop equations in matrix notation yields

𝐕 = 𝐙𝐬𝐞𝐫𝐢𝐞𝐬𝐈 (17)

where

V is the voltage vector.
I is the current vector.
Zseries is the series impedance matrix.

The elements of the impedance matrix Zseries are computed using Carson’s equations:

𝐳𝐢𝐣 =
{

𝑅𝑖𝑖−𝑔 + 𝑗𝑋𝑖𝑖−𝑔 if 𝑖 = 𝑗
𝑅𝑖𝑗−𝑔 + 𝑗𝑋𝑖𝑗−𝑔 if 𝑖 ≠ 𝑗

(18)

where Rii–g, Rij–g, Xii–g, and Xij–g are defined by Equation 5 through Equation 8.
The series admittance of the n conductor configuration can be determined by inverting
its impedance matrix, i.e.

𝐘𝐬𝐞𝐫𝐢𝐞𝐬 = 𝐙−𝟏
𝐬𝐞𝐫𝐢𝐞𝐬 (19)

2.3 Series Impedance Computations

This discussion of overhead transmission line series impedance concludes with a brief
dicussion of computing contant factors associated with the impedance matrix and rec-
onciling units of measure while evaluating these constants.

2.3.1 Computation of k in the Series Approximation to P and Q

The parameter k appears in the series expansion which approximates the P and Q terms
of Carson’s equations (see Equation 10 and Equation 12 of Section 2.1.1 for details). It
is of the form

𝑘 = 4𝜋𝑑√2𝜆𝑓 (20)

where

8



2.3 Series Impedance Computations 2 SERIES IMPEDANCE

𝜆 is the earth conductivity in ab℧/cm3.
d is a distance in centimeters.

This can be rewritten in terms of readily available quantities (i.e. commonly published
units) by substituting earth resistivity (Ω/m3) for conductivity and distance in conductor
separation units for distance in centimeters as follows

𝑘 = 4𝜋𝑑(𝑢𝐶𝑆 → 𝑐𝑚)√
2𝜆𝑓(𝜆 → 𝜌)

𝜌 (21)

where

uCS is conductor separation unit. In the US, conductor separation is usually mea-
sured in feet.
uCS → cm is the number of centimeters per conductor separation unit.
𝜆 → 𝜌 is a constant converting ab℧/cm3 to Ω/m3.

Assuming that the frequency and resitivity are constant for any set of impedance com-
putations the bulk of the expression

4𝜋(𝑢𝑐𝑠 → 𝑐𝑚)√
2𝜆𝑓(𝜆 → 𝜌)

𝜌 (22)

is a constant which is computed once then stored for reuse.

2.3.2 Constants in the P and Q Terms of Carson’s Equations

After P and Q are computed, the terms 4𝜔P and 4𝜔Q in Equation 5 through Equation 8
of Section 2.1.1 produce impedances in units of abΩ/cm. If impedances are expressed in
Ω/uLL, these terms expand to

4𝜔(𝑢𝐿𝐿 → 𝑐𝑚)(𝑎𝑏Ω → Ω)𝑃 (23)

and

4𝜔(𝑢𝐿𝐿 → 𝑐𝑚)(𝑎𝑏Ω → Ω)𝑄 (24)

where

uLL is line length unit. In the US, line length is usually measured in miles.
uCR → cm is the number of centimeters per line length unit.
abΩ → Ω is a constant converting abΩ to Ω, i.e. 1×10-9.
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3 SHUNT ADMITTANCE

Assuming that the frequency is constant, both P and Q are multiplied by the same
factor

4 ⋅ 2𝜋𝑓(𝑢𝑙𝑙 → 𝑐𝑚)(𝑎𝑏Ω → Ω) (25)

The first terms of of the inductive reactance equations (Equation 7 and Equation 8 of
Section 2.1) are also multiplied by half of this value, i.e.

2 ⋅ 2𝜋𝑓(𝑢𝑙𝑙 → 𝑐𝑚)(𝑎𝑏Ω → Ω) (26)

Once again, both of these constants are calculated once then stored.

2.3.3 Unit Conversions Associated With GMR Terms

When the logarithmic term in Equation 7 of Section 2.1 is computed, the conductor’s
GMR must be converted to conductor separation units, i.e.

𝑙𝑛 (
2ℎ𝑖

𝑔𝑚𝑟𝑗 ) (27)

is actually evaluated as

𝑙𝑛 (
2ℎ𝑖

𝑔𝑚𝑟𝑗(𝑢𝐶𝑅 → 𝑢𝐶𝑆)) (28)

where uCR → uCS converts conductor radius units to conductor separation units. Fac-
toring out a constant in this expression yields

𝑙𝑛 (
𝑐ℎ𝑖

𝑔𝑚𝑟𝑗 ) (29)

where

𝑐 = 2
𝑢𝐶𝑅 → 𝑢𝐶𝑆

(30)

The factor c is also calculated once and stored.

3 Shunt Admittance

The capacitance of an overhead transmission line is primarily a function of conductor
geometry and line geometry. All of the references cited in Section 2 with regard to series
impedance also touch upon the subject of self and mutual capacitance. The current
discussion most closely follows the work of Anderson (1987).

10
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3.1 Linear Charge Density Along a Single Conductor

Assuming that a group of n conductors carrying linear charge densities q1, q2, …, qn are
located above the ground plane, the voltage of conductor i to ground is

𝑉𝑖 =
𝑞1𝑙𝑛(

𝐷𝑖1
𝑑𝑖1 ) + ⋯ + 𝑞𝑖𝑙𝑛(

𝐷𝑖𝑖
𝑑𝑖 ) + ⋯ + 𝑞𝑛𝑙𝑛(

𝐷𝑖𝑛
𝑑𝑖𝑛 )

2𝜋𝜖 (31)

where

qi is the charge of conductor i in coulombs/meter.
di is the radius of conductor i.
Dii is the distance between conductor i and its image (i.e. 2hi in Figure 1).
dij is the distance between conductor i and conductor j.
Dij is the distance between conductor i and the image of conductor j as illustrated
in Figure 1.
𝜖 is the permittivity of the medium.

Note: The distances associated with each logarithmic ratio (e.g. di and Dii or din and
Din) of Equation 31 must be expressed in the same units.

3.2 Capacitance of N Conductors

Given a group of n conductors carrying linear charge densities q1, q2, …, qn that are
located above the ground plane, equations of the same form as Equation 31 (Section 3.1)
can be constructed for all conductors in the group. Expressing the complete set of n
potential equations in matrix notation yields

𝐕 = 𝐏𝐐 (32)

where

V is the voltage vector.
Q is the charge vector.
P is the potential coefficient matrix.

The elements of the potential matrix (with units of F-1m) are defined as follows:

𝑝𝑖𝑗 =
⎧⎪
⎨
⎪⎩

𝑙𝑛(
𝐷𝑖𝑖
𝑑𝑖 )

2𝜋𝜖 if 𝑖 = 𝑗
𝑙𝑛(

𝐷𝑖𝑖
𝑑𝑖𝑗 )

2𝜋𝜖 if 𝑖 ≠ 𝑗
(33)
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Recall that the permittivity of a medium is often expressed as

𝜖 = 𝜖0𝜖𝑟 (34)

where

𝜖0 is the permittivity of free space (i.e. 8.8541853×10-12F/m).
𝜖𝑟 is the relative permittivity of the medium (e.g. 1 for air).

In matrix notation, the capacitance of the configuration is

𝐐 = 𝐂𝐕 (35)

solving Equation 32 for the charge vector yields

𝐐 = 𝐏−𝟏𝐕 (36)

By inspection it is apparent that

𝐂 = 𝐏−𝟏 (37)

The matrix C is sometimes known as the capacitance coefficients (or Maxwell’s coeffi-
cients) of the line.

3.3 Shunt Admittance and Reactance Matrices

If the charge density along the transmission line is sinusoidal rather than linear, Equa-
tion 35 is a phasor equation. Multiplying Equation 35 by j𝜔 yields

𝑗𝜔𝐐 = 𝑗𝜔𝐂𝐕 (38)

Recalling that the current phasor associated with a sinusoidal variation in charge is
expressed as

𝐈 = 𝑗𝜔𝐐 (39)

It is apparent that

𝐈 = 𝑗𝜔𝐂𝐕 (40)

An alternate expression for the charging current is

𝐈 = 𝐘𝐬𝐡𝐮𝐧𝐭𝐕 (41)

Therefore, the charging admittance (which is pure susceptance) must be

𝐘𝐬𝐡𝐮𝐧𝐭 = 𝑗𝜔𝐂 (42)

The preceding discussion suggests a computational procedure for determining the ca-
pacitive parameters of a conductor configuration:

12
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1. Compute the configuration’s potential matrix P using Equation 33.
2. Compute its capacitance matrix C by inverting P.
3. Multiply the capacitance matrix C by the scalar j𝜔 to obtain the shunt admittance

matrix Yshunt.
4. Invert the the shunt admittance matrix Yshunt to determine the capacitive reac-

tance Xshunt.

3.4 Shunt Admittance Computations

This discussion of overhead transmission line shunt admittance concludes with a brief
dicussion of computing contant factors associated with the potential matrix and recon-
ciling units of measure while evaluating these constants.

3.4.1 Potential Coefficient Unit Conversions

The constant associated with the computation of potential coefficients in Equation 33
depends only upon the medium in which the conductors reside. Assuming that the
conductors are suspended in air (𝜖𝑟 = 1), the potential constant (in F-1m) is

1
2𝜋𝜖0𝜖𝑟

= 1
2𝜋 ⋅ 8.8541853 × 10−12 ⋅ 1 = 1.79751087 × 1010 (43)

To compute potential coefficients in line length units rather than meters, an additional
conversion factor m → uLL is required, i.e. the multiplier in Equation 33 is actually

𝑚 → 𝑢𝐿𝐿
2𝜋𝜖

or

(𝑚 → 𝑢𝐿𝐿)1.79751087 × 1010 (44)

which produces potential coefficients with units F-1 · uLL. This product is computed
once and stored.

3.4.2 Self Potential Unit Conversions

The self potential in Equation 33 is

𝑙𝑛(
𝐷𝑖𝑖
𝑑𝑖 )

2𝜋𝜖
When this term is computed, the numerator and denominator of the logarithmic factor
must be in the same units. Assuming that the conductor’s diameter (in uCD) is readily

13
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available, the distance must be converted to conductor separation units and the diam-
eter must be converted to a radius. Therefore, the computed logarithmic factor is

𝑙𝑛
(

𝐷𝑖𝑖
𝑑𝑖
2 (𝑢𝐶𝐷 → 𝑢𝐶𝑆))

where uCD → uCS converts conductor diameter to conductor separation units.
Factoring out a constant in this expression

𝑙𝑛 (𝑐 𝐷𝑖𝑖
𝑑𝑖 ) (45)

where

𝑐 = 2
𝑢𝐶𝑅 → 𝑢𝐶𝑆

(46)

The factor c is computed once and saved.
Note: In the context of the current discussion, the clear choice of unit for capacitive
reactance is Ω · uLL. However, the capacitive reactance found in American reference
materials is often MΩ · uLL or more specifically MΩ · mile. Hence, an additional fac-
tor may be required when converting capacitive reactance from computational units to
commonly published units (ie. 10-6 for converting MΩ to Ω).

4 Units of Measure

A number of unit systems are involved in overhead transmission line impedance calcu-
lations. The current section is intended to make their distinctions clear. An engineer
provides data for the calculations in what we will refer to as the “user” unit system (also
referred to as “generally available units” or “commonly published units” in other sec-
tions of this document). User units may vary along the following lines:

• Conductor separation units, uCS, are associated with conductor-to-conductor and
conductor-to-image distances. In US applications, conductor separation is usually
measured in feet.

• Conductor radius units, uCR, are associated with effective radius (GMR) measure-
ments. In American reference materials, conductor GMR is usually reported in
feet.

• Conductor diameter units, uCD, are associated with outside diameter measure-
ments. In American reference materials, conductor diameter is usually reported
in inches.

• Line length units, uLL, are associated with the length of a line section. In US utility
applications, line length is usually measured in miles.

14
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The units in which equations are expressed in this document are called problem formu-
lation units. The units in which impedance calculations are actually implemented are
referred to as computation units.
Table 2 describes these unit systems in detail.

Table 2: Impedance Unit Conversions

Units
Quantity Formulation Computational User

Frequency Hz Hz Hz
Earth Resitivity ab℧/cm3 Ω/m3 Ω/m3

k abΩ/cm Ω / uLL n/a
Resistance abΩ/cm Ω / uLL Ω / uLL
Inductive Reactance abΩ/cm Ω / uLL Ω / uLL
Potential Coefficients F-1· m F-1· uLL n/a
Maxwell’s Coefficients F/m F / uLL n/a
Capacitive Susceptance ℧/m ℧ / uLL n/a
Capacitive Reactance Ω · m Ω · uLL (M)Ω · uLL
Conductor Diameter m uCS uCD
Conductor GMR cm uCS uCR
Conductor Separation cm uCS uCS

uCD - conductor diameter unit
uCR - conductor radius unit
uCS - conductor separation unit
uLL - line length unit

15
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