
Graph Algorithms

Timothy Vismor

June 11, 2011

Abstract

enetwork structure ofmany physical systems is represented bymath-
ematical entities known as graphs. is document examines several of the
computational algorithms of graph theory most relevant to network anal-
ysis.

Copyright © 1990 - 2011 Timothy Vismor

CONTENTS CONTENTS

Contents

1 Graph Nomenclature 5
1.1 Subgraph . 5
1.2 Directed Graph . 5
1.3 Undirected Graph . 6
1.4 Paths and Connected Graphs 7
1.5 Cyclic Graph . 7
1.6 Acyclic Graph . 7

2 Modeling Graphs 9
2.1 Representing Graphs as Lists 10
2.2 Representing Graphs as Adjaceny Matrices 10
2.3 Representing Sparse Graphs as Adjaceny Lists 11

3 Abstract Data Types for Graphs 13
3.1 Adjacency List . 13
3.2 Reduced Graph . 14
3.3 List . 14
3.4 Mapping . 15

4 Creating Adjacency Lists 16

5 Depth First Search 17
5.1 Recursive Depth First Search 18
5.2 Non-recursive Depth First Search 19
5.3 Depth First Spanning Trees 20
5.4 Depth First Traversal . 20

6 Graph Structure Analysis 21
6.1 Connected Components of a Graph 22
6.2 Isolated Vertex Detection . 22
6.3 Cycle Detection . 22

6.3.1 Detecting Cycles in Undirected Graphs 23
6.3.2 Detecting Cycles in Directed Graphs 24

7 Determining the Degree of Each Vertex 25

2

LIST OF FIGURES LIST OF ALGORITHMS

8 Vertex Elimination 26
8.1 Eliminating a Single Vertex 26
8.2 Eliminating Many Vertices . 27
8.3 Initializing Minimum Degree Vertex Tracking 28
8.4 Maintaining the Reduced Graph 29
8.5 Querying the Reduced Graph State 30

List of Figures

1 Example of a Directed Graph 6
2 Example of an Undirected Graph 7
3 Example of Cycles in a Digraph 8
4 Example of an Acyclic Digraph 8
5 Example of a Directed Tree 9
6 Example of a Rooted Free Tree 9
7 Adjacency List of Directed Graph in Figure 1 12
8 Adjacency List of Undirected Graph in Figure 2 12

List of Tables

1 Vertex Degree Summary for Figure 1 6

List of Algorithms

1 Create Adjacency List of Undirected Graph 16
2 Map Vertices To Labeling Order 16
3 Create Ordered Adjacency List 17
4 Depth First Search . 18
5 Recursive Depth First Search 18
6 Depth First Search With Recursion Removed 19
7 Non-recursive DFS Vertex Visitation 19
8 Depth First Traversal . 21
9 Extract the Connected Components of a Graph 22
10 Isolated Vertex Detection . 23
11 Cycle Detection in Undirected Graphs 23
12 Cycle Detection in Directed Graphs 24
13 Determine Vertex Degree Using Adjacency List 25
14 Determine Vertex Degree of Directed Graph Using Edges . . . 25
15 Determine Vertex Degree of Undirected Graph Using Edges . 26

3

LIST OF ALGORITHMS LIST OF ALGORITHMS

16 Eliminate a Vertex from a Graph 27
17 Initialize Minimum Degree Vertex Tracking 28
18 Increase the Degree of a Vertex 29
19 Decrease the Degree of a Vertex 29
20 Remove a Vertex from the Reduced Graph 30
21 Determine if a Vertex is in the Reduced Graph 30

4

1 GRAPH NOMENCLATURE

1 Graph Nomenclature

Data structures and algorithms derived from graph theory form the basis for
many network analysis techniques. A brief review of the most relevant aspects
of computational graph theory follows. An excellent introduction to the sub-
ject is found in Aho, Hopcroft, and Ullman(1983) [1]. Horowitz and Sahni
(1978) [2] cover similar material in a more disjointed fashion. Even (1980) [3]
provides a more theoretical examination of the subject.

e graph 𝐺 = (𝑉, 𝐸) consists of a ënite set of vertices 𝑉(𝐺) = {𝑣1, 𝑣2, ⋯ , 𝑣𝑛}
and a ënite set of edges 𝐸(𝐺) = {𝑒1, 𝑒2, ⋯ , 𝑒𝑛}.

Each edge corresponds to a pair of vertices. If edge 𝑒 corresponds to the
vertex pair (𝑣, 𝑤), then 𝑒 is incident upon vertices 𝑣 and 𝑤. e number of
vertices in 𝑉(𝐺) is indicated by |𝑉|. e number of edges in 𝐸(𝐺) is indicated by
|𝐸|.

A labeling (or ordering) of the graph 𝐺 is a mapping of the set 1, 2, ⋯ , ||𝑉 ||
onto 𝑉(𝐺).

e usual convention for drawing a graph, is to represent each vertex as a
dot and each edge as a line connecting two dots. If the graph is directed, an
arrow is superimposed on each edge to show its orientation.

1.1 Subgraph

A graph 𝐺 = 𝑉 , 𝐸 is a subgraph of 𝐺 if the following conditions apply.

• 𝑉  𝐺 ⊂ 𝑉(𝐺).

• 𝐸(𝐺) consists of edges (𝑣, 𝑤) in 𝐸(𝐺) where both 𝑣 and 𝑤 are in 𝑉 (𝐺).

If 𝐸(𝐺) consists of all the edges in 𝐸(𝐺) for which the second condition
holds, then 𝐺 is an induced subgraph of 𝐺. An induced subgraph of 𝐺 that is
not a proper subset of any other connected subgraph of 𝐺 is called a connected
component of 𝐺.

1.2 Directed Graph

If the edges of 𝐺 are ordered pairs, then 𝐺 is a directed graph. In a directed
graph, (𝑣, 𝑤) ≠ (𝑤, 𝑣).

A directed graph is often referred to as a digraph. If edge 𝑒 of a digraph
is represented by (𝑣, 𝑤), then 𝑒 is an edge from 𝑣 to 𝑤. Vertex 𝑤 is adjacent
to vertex 𝑣. Vertex 𝑣 is not adjacent to vertex 𝑤 unless the edge (𝑤, 𝑣) also

5

1.3 Undirected Graph 1 GRAPH NOMENCLATURE

2

5

1
4

3
6

Figure 1: Example of a Directed Graph

exists in 𝐺. e number of vertices adjacent to vertex 𝑣 is the degree of 𝑣. In-
degree indicates the number of edges incident upon 𝑣. Out-degree indicates the
number of edges emanating from 𝑣.

Figure 1 depicts a directed graph with six vertices and ten edges. In the
ëgure, the arrowheads indicate the direction of the edge.

Table 1 summarizes the degree of each vertex in Figure 1.

Table 1: Vertex Degree Summary for Figure 1

Vertex Degree In-Degree Out-Degree
1 2 1 1
2 4 1 3
3 4 2 2
4 4 3 1
5 3 2 1
6 3 1 2

1.3 Undirected Graph

If the edges of 𝐺 are unordered pairs, 𝐺 is a undirected graph. In an undirected
graph, (𝑣, 𝑤) = (𝑤, 𝑣). If edge 𝑒 of an undirected graph is represented by (𝑣, 𝑤),
then 𝑣 is adjacent to 𝑤 and 𝑤 is adjacent to 𝑣. e terminology “undirected
graph” is somewhat cumbersome. In this document, undirected graphs are often
referred to as just “graphs”.

Figure 2 depicts an undirected graph with six vertices and eight edges. e
fact that the graph is undirected is indicated by the absence of directionality
arrows.

6

1.4 Paths and Connected Graphs 1 GRAPH NOMENCLATURE

2

5

1
4

3
6

Figure 2: Example of an Undirected Graph

1.4 Paths and Connected Graphs

A path is a sequence of edges, e.g. (𝑣1, 𝑣2), (𝑣2, 𝑣3), ⋯ , (𝑣𝑛−1, 𝑣𝑛). is path con-
nects vertices 𝑣1 and 𝑣𝑛. e path may also be represented by the vertex se-
quence 𝑣1, 𝑣2, 𝑣3, ⋯ , 𝑣𝑛−1, 𝑣𝑛. e path begins at vertex 𝑣1 passes through ver-
tices 𝑣2, 𝑣3, ⋯ , 𝑣𝑛−1 and ends at vertex 𝑣𝑛.

e number of edges that comprise a path is its length. A path is simple if
all of the vertices on a path are distinct (with the possible exception of the ërst
and last vertices).

If some path connects each pair of vertices in 𝐺, then 𝐺 is a connected graph.
Connected digraphs are classiëed as either weakly connected or strongly con-

nected. A strongly connected digraph has a directed path that connects all the
vertices in the graph. All the vertices of a strongly connected digraph must have
an in-degree of at least one.

A weakly connected digraph has has an undirected path that connects all the
vertices in the graph. All the vertices of a weakly connected digraph must have
either an in-degree or out-degree of at least one.

1.5 Cyclic Graph

A cycle is a simple path that begins and ends at the same vertex and has a length
of at least one. We refer to any graph that contains a cycle as a cyclic graph.

Figure 3 illustrates the cycles that are present in the directed graph of Fig-
ure 1.

1.6 Acyclic Graph

A directed graph with no cycles is called directed acyclic graph or a DAG for
short. An acyclic digraph has at least one vertex with an out-degree of zero.

7

1.6 Acyclic Graph 1 GRAPH NOMENCLATURE

2

5

1
4

3
6

Figure 3: Example of Cycles in a Digraph

2

5

1
4

3
6

Figure 4: Example of an Acyclic Digraph

Figure 4 shows a variant of the directed graph of Figure 1 that contains no
cycles. You will observe that vertex 4 has an out-degree of zero.

A directed tree is a connected DAG with the following properties:

• ere is one vertex, called the root, which no edges enter.

• All vertices except the root have one entering edge.

• ere is a unique path from each vertex to the root.

A DAG consisting of one or more trees is called a forest. If the graph
𝐹 = (𝑉, 𝐸) is a forest and the edge (𝑣, 𝑤) is in 𝐸(𝐹), vertex 𝑣 is the parent of
𝑤 and vertex 𝑤 is the child of 𝑣. If there is a path from 𝑣 to 𝑤, then vertex 𝑣
is an ancestor of 𝑤 and vertex 𝑤 is a descendent of 𝑣. A vertex with no proper
descendants is a leaf. A vertex 𝑣 and its descendants form a subtree of 𝐹 . e
vertex 𝑣 is the root of this subtree. e depth of vertex 𝑣 is the length of the
path from the root to 𝑣. e height of vertex 𝑣 is the length of the longest path
from 𝑣 to a leaf. e height of a tree is the height of its root. e level of vertex
𝑣 is its depth subtracted from the height of the tree.

Figure 5 depicts a directed tree. Its root is vertex 1. Its leaves are the set of
vertices 𝐿(𝐺) = {3, 4, 6, 8, 9}.

8

2 MODELING GRAPHS

1

4

72 5

3 8 96

Figure 5: Example of a Directed Tree

1

4

72 5

3 8 96

Figure 6: Example of a Rooted Free Tree

An undirected, connected, acyclic graph is called a free tree or an undirected
tree. A rooted free tree is a free tree in which one vertex has been designated
as the root. A directed tree is converted into a rooted free tree by discarding
the orientation of the edges. A rooted free tree is converted into a directed tree
by orienting each edge away from the root. e terminology which applies to
directed trees also applies to rooted free trees.

Figure 6 depicts the directed tree of Figure 5 converted into a rooted free
tree.

2 Modeling Graphs

A number of different data structures provide useful representations of a graph
𝐺. Different representations of 𝐺 often lend themselves to speciëc applications.
Indeed, the efficiency of graph algorithms often relies on the manner in which
a graph is represented. For this reason, it may prove necessary to transform
a graph from one representation to another to implement a complex series of
graph operations. It can be shown that converting 𝐺 between representations
requires no more than 𝑂 |𝑉|2 operations.

9

2.1 Representing Graphs as Lists 2 MODELING GRAPHS

2.1 Representing Graphs as Lists

e most obvious data structure for representing a graph arises directly from its
deënition. 𝐺 is described by two simple lists:

• A vertex list 𝑉(𝐺), and

• An edge list 𝐸(𝐺) which represents each edge as a pair of vertices.

is data structure often forms the basis of the interface between the user
and graph algorithms. e reasons are twofold:

• For many people, it is the most “natural” way to describe the connections
in a graph.

• It is a relatively efficient way to represent sparse graphs.

As an example, consider the directed graph of Figure 1. It has six vertices.
Its vertex list is simply

𝑉(𝐺)𝑑𝑖𝑔𝑟𝑎𝑝ℎ = {1, 2, 3, 4, 5, 6}
e directed graph in Figure 1 has ten edges. Its edge list follows.

𝐸(𝐺)𝑑𝑖𝑔𝑟𝑎𝑝ℎ = {(1, 3), (2, 1)(2, 3), (2, 4), (3, 2), (3, 5), (4, 6), (5, 4), (6, 4), (6, 5)}

e corresponding undirected graph shown in Figure 2 has the same six vertices.

𝑉(𝐺)𝑢𝑛𝑑𝑖𝑟𝑒𝑐𝑡𝑒𝑑 = {1, 2, 3, 4, 5, 6}
However, it has 16 edges.

𝐸(𝐺)𝑢𝑛𝑑𝑖𝑟𝑒𝑐𝑡𝑒𝑑 = {(1, 2), (1, 3), (2, 1)(2, 3), (2, 4), (3, 1), (3, 2), (3, 5),
(4, 2), (4, 5), (4, 6), (5, 3), (5, 4), (5, 6), (6, 4), (6, 5)}

2.2 Representing Graphs as Adjaceny Matrices

An alternate representation of 𝐺 is known as an adjacency matrix. In this data
structure, a |𝑉| × |𝑉| matrix 𝐀 is established such that

𝑎𝑖𝑗 =


1 when vertex 𝑖 is adjacent to vertex 𝑗
0 when vertex 𝑖 is not adjacent to vertex 𝑗

(1)

10

2.3 Representing Sparse Graphs as Adjaceny Lists 2 MODELING GRAPHS

e storage required to implement an adjacency matrix is proportional to |𝑉|2.
When 𝐺 is represented as an adjacency matrix, the best time complexity you
can expect for graph algorithms is 𝑂 |𝑉|2. is is the time required to access
each element of the matrix exactly one time.

Once again consider the directed graph of Figure 1. Its adjacency matrix
follows.

𝐴𝑑𝑖𝑔𝑟𝑎𝑝ℎ =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 1 0 0 0
1 0 1 1 0 0
0 1 0 0 1 0
0 0 0 0 0 1
0 0 0 1 0 0
0 0 0 1 1 0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

e adjacency matrix of the undirected version of the graph (Figure 2) is as
follows.

𝐴𝑢𝑛𝑑𝑖𝑟𝑒𝑐𝑡𝑒𝑑 =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 1 1 0 0 0
1 0 1 1 0 0
1 1 0 0 1 0
0 1 0 0 1 1
0 0 1 1 0 1
0 0 0 1 1 0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

Observe that the adjacency matrix of an undirected graph is symmetric.

2.3 Representing Sparse Graphs as Adjaceny Lists

An adjacency list is a data structure for representing adjacency relationships in
sparse graphs. e adjacency list of 𝐺 is actually a set of |𝑉| linked lists. Each
vertex 𝑣 is the head of a list. Vertices adjacent to 𝑣 form the body of each list. If
a vertex is not adjacent to any other vertices its list is empty.

e storage required to implement an adjacency list is proportional to |𝑉| +
|𝐸|. When 𝐺 is represented as an adjacency list, the best time complexity you
can expect for graph algorithms is 𝑂 (|𝑉| + |𝐸|). e time required to access each
vertex and each edge exactly one time. An algorithm whose time complexity is
𝑂 (|𝑉| + |𝐸|) is sometimes referred to as linear in the size of 𝐺.

Figure 7 depicts the adjacency list for the directed graph in Figure 1.
Figure 8 depicts the adjacency list for the undirected graph in Figure 2.

11

2.3 Representing Sparse Graphs as Adjaceny Lists 2 MODELING GRAPHS

1

2

3

4

3 eol

1

2

6 eol

Vertex

5

6

4 eol

4

3 4 eol

5 eol

5 eol

Adjacent Vertices

Figure 7: Adjacency List of Directed Graph in Figure 1

1

2

3

4

2

1

2

2

Vertex

5

6

3

4

3 4 eol

5 eol

5 eol

Adjacent Vertices

3 eol

5 6 eol

4 6 eol

Figure 8: Adjacency List of Undirected Graph in Figure 2

12

3 ABSTRACT DATA TYPES FOR GRAPHS

3 Abstract Data Types for Graphs

Graph algorithms in this document are described using an abstract data type
paradigm. at is, data sets and operators are speciëed, but the actual data
structures used to implement them remain undeëned. Any data structure that
efficiently satisëes the constraints imposed in this section is suited for the job.

All signals emitted by operators deëned in this section are used to navigate
through data, not to indicate errors. Error processing is intentionally omitted
from the algorithms in this document. e intent is to avoid clutter that ob-
scures the nature of the algorithms.

3.1 Adjacency List

An adjacency list, 𝐴, is a data type for representing adjacency relationships of the
sparse graph 𝐺 = (𝑉, 𝐸). Adjacency lists are described in more detail in Section
2.3 of this document.

An adjacency list is typically stored in a dynamic data structure that iden-
tiëes the edge from vertex 𝑖 to vertex 𝑗 as an ordered pair of vertex labels (𝑖, 𝑗).
Descriptive information is usually associated with each edge.

More speciëcally, the following operations are supported on an adjacency
list 𝐴:

• Insert adds an arbitrary edge (𝑖, 𝑗) to 𝐴. If edge (𝑖, 𝑗) is not already in
the list, insert signals a successful insertion.

• Get retrieves an arbitrary edge (𝑖, 𝑗) from 𝐴. When edge (𝑖, 𝑗) is in 𝐴, get
signals a successful lookup.

• Scan permits sequential access to all edges incident upon vertex 𝑖. Vertex
scans are bounded. More speciëcally, a vertex scan ënds all edges (𝑖, 𝑗)
such that 𝑗𝑚𝑖𝑛 ≤ 𝑗 ≤ 𝑗𝑚𝑎𝑥. When scan ënds edge (𝑖, 𝑗), it returns 𝑗.
When a vertex scan has exhausted all entries in its range, a ínished signal
is emitted.
A scan has two support operations: push and pop. A push suspends
the scan at its current position. A pop resumes a suspended scan. e
push and pop operations permit scans to be nested.

• Put updates the information associated with an arbitrary edge (𝑖, 𝑗) in 𝐴.

e algorithms assume that read operations (get and scan) make edge
information available in a buffer (this buffer is usually denoted by the symbol

13

3.2 Reduced Graph 3 ABSTRACT DATA TYPES FOR GRAPHS

𝑒). Update operations (insert and put) modify the description of an edge
based on the current contents of the communication buffer.

Algorithms for creating adjacency lists are examined in Section 4.

3.2 Reduced Graph

A reduced graph, 𝐺 = (𝑉 , 𝐸), is a data structure that supports the systematic
elimination of all vertices from the graph 𝐺 = (𝑉, 𝐸). e vertices of the re-
duced graph are denoted as 𝑉 (𝐺) and its edges as 𝐸(𝐺). A crucial attribute
of the reduced graph is efficient identiëcation of the vertex in 𝑉 (𝐺) with the
minimum degree.

A reduced graph supports the following operations:

• Increase_degree increases the degree of vertex 𝑣 in 𝑉 (𝐺) by one.

• Decrease_degree decreases the degree of vertex 𝑣 in 𝑉 (𝐺) by one.

• Remove excises vertex 𝑣 from $𝑉 (𝐺) .

• In_graph tests to see whether vertex 𝑣 is in 𝑉 (𝐺).

• Minimum_degree ënds the vertex 𝑣 in 𝑉 (𝐺) with the smallest degree.

e topic of vertex elimination and efficient techniques for facilitating the
elimination of many vertices are examined in detail in Section 8 of this docu-
ment.

3.3 List

A simple list 𝐿 is an ordered set of elements. If the set {𝑙1, ⋯ , 𝑙𝑖, 𝑙𝑖+1, ⋯ , 𝑙𝑛}
represents 𝐿, then the list contains 𝑛 elements. Element 𝑙1 is the ërst item on
the list and 𝑙𝑛 is the last item on the list. Element 𝑙𝑖 precedes 𝑙𝑖+1 and element
𝑙𝑖+1 follows 𝑙𝑖. Element 𝑙𝑖 is at position 𝑖 in 𝐿. Descriptive information may
accompany each item on a list. Lists associated with graph algorithms support
the following operations:

• Link adds an element 𝑥 to a list at position 𝑖. Inserting element 𝑥 position
𝑖 results in an updated list: {𝑙1, ⋯ , 𝑙𝑖−1, 𝑥, 𝑙𝑖, 𝑙𝑖+1, ⋯ , 𝑙𝑛} An insertion at
position 𝑒𝑜𝑙 appends 𝑥 to the end of the list.

• Unlink removes the element at position 𝑖 from the list. Deleting element
𝑖 results in the list {𝑙1, ⋯ , 𝑙𝑖−1, 𝑙𝑖+1, ⋯ , 𝑙𝑛}.

14

3.4 Mapping 3 ABSTRACT DATA TYPES FOR GRAPHS

• Find looks for an element on the list and returns its position. If the
element is not a member of the list, 𝑒𝑜𝑙 is returned.

• First returns the position of the ërst item on the list. When the list is
empty, 𝑒𝑜𝑙 is returned.

• Next returns position 𝑖 + 1 on the list if position 𝑖 is provided. When 𝑙𝑖
is the last item on the list, 𝑒𝑜𝑙 is returned.

• Previous returns position 𝑖 − 1 on the list if position 𝑖 is provided. If 𝑖
is one, 𝑒𝑜𝑙 is returned.

A linked list refers to a list implementation that does not require its mem-
bers to reside in contiguous storage locations. In this environment, an efficient
implementation of the previous operator dictates the use of a doubly linked
list.

Communicating with a simple list is analogous to adjacency list communi-
cation. Read operations (find, first, next, and previous) make list infor-
mation available in a buffer. Update operations (link, unlink) modify the
list based on the current contents of the buffer.

If it is necessary to distinguish discrete elements in the communication buffer,
the structure notation of the C programming language is used. For example,
consider a set of edges 𝐸 maintained in a list whose communication buffer is
𝑒. Each edge in 𝐸 is deëned by the pair of vertices (𝑣, 𝑤) that constitute its
endpoints. In this situation, the endpoints of edge 𝑒 are referenced as 𝑒.𝑣 and
𝑒.𝑤.

3.4 Mapping

Amapping 𝜇 relates elements of its domain 𝑑 to elements of its range 𝑟 as follows.

𝜇(𝑑) = 𝑟
A mapping resides in a data structure that supports two operations:

• Map links an element 𝑟 in the range of 𝜇 to an arbitrary element 𝑑 in the
domain of 𝜇, i.e. sets 𝜇(𝑑) to 𝑟.

• Evaluate evaluates the mapping 𝜇 for an arbitrary element 𝑑 in its do-
main, i.e. returns 𝜇(𝑑).

15

4 CREATING ADJACENCY LISTS

Algorithm 1: Create Adjacency List of Undirected Graph
𝑖 =first (𝑉)
wh i l e 𝑘 ≠ 𝑒𝑜𝑙

insert (𝐴, 𝑣, ℎ𝑒𝑎𝑑𝑒𝑟)
𝑘 =next (𝑉, 𝑘)

𝑘 =first (𝐸)
wh i l e 𝑘 ≠ 𝑒𝑜𝑙

insert (𝐴, 𝑒.𝑣, 𝑒.𝑤)
insert (𝐴, 𝑒.𝑤, 𝑒.𝑣)
𝑘 =next (𝐸, 𝑘)

Algorithm 2: Map Vertices To Labeling Order
𝑖 = 0
𝑘 =first (𝑉)
wh i l e 𝑘 ≠ 𝑒𝑜𝑙

𝑖 = 𝑖 + 1
map (𝜇, 𝑣, 𝑖)
𝑘 =next (𝑉, 𝑘)

4 Creating Adjacency Lists

An undirected graph 𝐺 = (𝑉, 𝐸) is represented by the sets 𝑉(𝐺) and 𝐸(𝐺). If
these sets are maintained as simple lists where the buffer 𝑣 communicates with
the vertex list and 𝑒 communicates with the edge list, Algorithm 1 creates an
adjacency list 𝐴 for 𝐺.

e ërst loop in Algorithm 1 creates a header for each vertex. is operation
is not strictly necessary given the current data deënition; however, it is often
required in practical implementations.

You should observe that the algorithm inserts each edge in 𝐸(𝐺) into the ad-
jacency list twice: once in the stated direction and once in the reverse direction.
If 𝐺 is a directed graph, the reverse insertion is inappropriate (i.e. omit the ënal
insert statement in Algorithm 1). It should be apparent that the algorithm has
a time complexity of 𝑂 (|𝑉| + |𝐸|) if all operators have time complexity of 𝑂(1).

It is often beneëcial to create an adjacency list based on an alternate labeling
of the vertices of 𝐺. is operation requires a mapping 𝜇 of the integers from
1 to |𝑉| onto the set 𝑉(𝐺). Algorithm 2 maps 𝑉(𝐺) to the order in which it is
enumerated.

16

5 DEPTH FIRST SEARCH

Algorithm 3: Create Ordered Adjacency List
𝑖 = 0
𝑘 =first (𝑉)
wh i l e 𝑘 ≠ 𝑒𝑜𝑙

𝑖 = 𝑖 + 1
map (𝜇, 𝑣, 𝑖)
insert (𝐴, 𝑣, ℎ𝑒𝑎𝑑𝑒𝑟)
𝑘 =next (𝑉, 𝑘)

𝑘 = first (𝐸)
wh i l e 𝑘 ≠ 𝑒𝑜𝑙

𝑖 =evaluate (𝜇, 𝑒.𝑣)
𝑗 =evaluate (𝜇, 𝑒.𝑤)
insert (𝐴, 𝑖, 𝑗)
insert (𝐴, 𝑗, 𝑖)
𝑘 =next (𝐸, 𝑘)

Algorithm 3 combines these two procedures. It labels 𝑉(𝐺) according to its
order of enumeration and creates an adjacency list based on this labeling.

If map and evaluate have constant time complexity, the overall algorithm
retains its linear complexity.

Note. In a practical implementation, map will insert the pair (𝑑, 𝑟) into
a data structure that is optimized for searching and evaluate will look up
𝑑 in this data structure. Efficient operations of this sort have a time com-
plexity of 𝑂  log2 𝑛 . erefore, adjacency list creation will have complexity
𝑂  |𝑉| log2 |𝑉| + |𝐸| log2 |𝑉| .

5 Depth First Search

Given a graph 𝐺 = (𝑉, 𝐸) and a vertex 𝑟 ∈ 𝑉(𝐺), a depth-ërst search ënds all
the vertices 𝑣 ∈ 𝑉(𝐺) for which there is a path from 𝑟 to 𝑣. In other words, a
depth-ërst search ënds the connected component of 𝐺 that contains 𝑟. It does
so by starting at 𝑟 and systematically searching 𝐺 until no more vertices can be
reached. After a vertex is reached by the search, it is referred to as visited. A
vertex is explored after all adjacent vertices are visited. e vertex 𝑟 that anchors
the search is referred to as its root.

When a depth-ërst search reaches vertex 𝑣, it immediately suspends its ex-
ploration of 𝑣 and explores any unvisited vertex𝑤 adjacent to 𝑣. e exploration
of 𝑣 resumes only after the exploration of 𝑤 has ënished. e order in which

17

5.1 Recursive Depth First Search 5 DEPTH FIRST SEARCH

Algorithm 4: Depth First Search
wh i l e next (𝑉)≠ 𝑓𝑖𝑛𝑖𝑠ℎ𝑒𝑑

map (𝛾, 𝑣, 𝑢𝑛𝑣𝑖𝑠𝑖𝑡𝑒𝑑)
𝑑𝑒𝑝𝑡ℎ = 𝑑𝑓𝑛 = 0
dfs (𝑟)

Algorithm 5: Recursive Depth First Search
dfs (𝑣)

𝑑𝑓𝑛 = 𝑑𝑓𝑛 + 1
map (𝛾, 𝑣, 𝑑𝑓𝑛)
map (𝛿, 𝑣, 𝑑𝑒𝑝𝑡ℎ)
𝑑𝑒𝑝𝑡ℎ = 𝑑𝑒𝑝𝑡ℎ + 1
f o r all vertices 𝑤 adjacent to 𝑣

i f evaluate (𝛾, 𝑤) is 𝑢𝑛𝑣𝑖𝑠𝑖𝑡𝑒𝑑
map (𝜌, 𝑤, 𝑣)
dfs (𝑤)

𝑑𝑒𝑝𝑡ℎ = 𝑑𝑒𝑝𝑡ℎ − 1

a depth-ërst search visits a graph 𝐺 is a generalization of the order in which a
preorder traversal visits the vertices of a tree. If 𝐺 is a tree, a depth-ërst search
produces a preorder traversal of 𝐺.

5.1 Recursive Depth First Search

Algorithm 4 performs a depth-ërst search of 𝐺 rooted at 𝑟. e counters 𝑑𝑓𝑛
and 𝑑𝑒𝑝𝑡ℎ are global. It relies upon the recursive procedure dfs. Algorithm 5
sketches the implementation of the dfs procedure.

Observe that Algorithm 5 produces three mappings as it performs the DFS:
the depth ërst ordering 𝛾, the vertex depth map 𝛿, and the predecessor map
𝜌. ese mappings provide useful information concerning the structure of the
graph. However, only 𝛾 is actually required by the algorithm. It is initialized
with all vertices marked as 𝑢𝑛𝑣𝑖𝑠𝑖𝑡𝑒𝑑 and updated as each node is visited.

e time complexity of a depth-ërst search is linear in the size of 𝐺, i.e.
𝑂 (|𝑉| + |𝐸|). To achieve this linear time complexity, the implementation of the
adjacency list is crucial. More speciëcally, some indication of the most recently
visited neighbor (call it vertex 𝑤) must be maintained for each active vertex
𝑣. is permits the scan of 𝑣’s adjacency list to resume at the point where it

18

5.2 Non-recursive Depth First Search 5 DEPTH FIRST SEARCH

Algorithm 6: Depth First Search With Recursion Removed
dfs (𝑟)

visit (𝑟, 𝑛𝑜𝑝𝑎𝑟𝑒𝑛𝑡)
𝑣 = 𝑟
next edge
f o r all vertices 𝑤 adjacent to 𝑣

i f evaluate (𝛾, 𝑤) is 𝑢𝑛𝑣𝑖𝑠𝑖𝑡𝑒𝑑
𝑑𝑒𝑝𝑡ℎ = 𝑑𝑒𝑝𝑡ℎ + 1
visit (𝑤, 𝑣)
𝑣 = 𝑤

goto next edge
i f 𝑣 ≠ 𝑟

𝑣 =evaluate (𝜌, 𝑣)
𝑑𝑒𝑝𝑡ℎ = 𝑑𝑒𝑝𝑡ℎ − 1
goto next edge

Algorithm 7: Non-recursive DFS Vertex Visitation
visit (𝑣, 𝑝𝑟𝑒𝑑𝑒𝑐𝑒𝑠𝑠𝑜𝑟)

map (𝛿, 𝑣, 𝑑𝑒𝑝𝑡ℎ)
map (𝜌, 𝑣, 𝑝𝑟𝑒𝑑𝑒𝑐𝑒𝑠𝑠𝑜𝑟)
𝑑𝑓𝑛 = 𝑑𝑓𝑛 + 1
map (𝛾, 𝑣, 𝑑𝑓𝑛)

was suspended when the exploration of 𝑤 is ënished. If you have to rescan the
adjacency list of 𝑣 to pick up where you left off, linearity is lost.

5.2 Non-recursive Depth First Search

Since the procedure described in Section 5.1 has a depth of recursion of |𝑉| in the
worst case, Algorithm 5 may have unacceptable execution characteristics (such
as stack overìow) for large graphs. Algorithm 6 removes the recursion from the
dfs function.

e vertex visitation procedure visit is straightforward and is speciëed in
Algorithm 7.

Observe that vertex visitation (Algorithm 7) generates the three mappings
(𝛾, 𝛿, and 𝜌) that were produced by the recursive procedure. Note that the pre-
decessor mapping 𝜌 is required by the unwound dfs procedure. It was not

19

5.3 Depth First Spanning Trees 5 DEPTH FIRST SEARCH

required by the recursive implementation since equivalent information is im-
plicitly retained on the stack during recursion.

e computational complexity of this unwound procedure is similar to that
of the recursive implementation.

When implementing non-recursive depth ërst search, don’t forget that the
dfs function of Algorithm 6 is imbedded in the overall procedure deëned by
Algorithm 4.

See Section 5.1 for more information on these issues.

5.3 Depth First Spanning Trees

Any edge (𝑣, 𝑤) that leads to the discovery of an unvisited vertex during a depth-
ërst search is referred to as a tree edge of 𝐺. Collectively, the tree edges of 𝐺
form a depth-ërst spanning tree of 𝐺. Tree edges are detected as follows:

• In Algorithm 5, the recursive depth-ërst search of Section 5.1, only the
tree edges will cause map(𝜌, 𝑤, 𝑣) to execute.

• In Algorithm 6, the non-recursive depth-ërst search of Section 5.2, only
tree edges cause visit(𝑤, 𝑣) to execute.

If 𝐺 is a directed graph, an edge that connects a vertex to one of its ancestors
in the spanning tree is referred to as a back edge. An edge that connects a vertex
to one of its descendants in the spanning tree is referred to as a forward edge. If
𝑤 is neither an ancestor nor descendant of 𝑣, then (𝑣, 𝑤) is called a cross edge.

If 𝐺 is an undirected graph, the depth-ërst spanning tree simpliëes as fol-
lows:

• Back edges and forward edges are not distinguished.

• Cross edges do not exist.

erefore, only two types of edge are deëned for undirected graphs. We will
call them tree edges and back edges.

5.4 Depth First Traversal

Following the lead of Horowitz and Sahni (1978) [2], a distinction is made
between a depth-ërst search (Sections 5.1 and 5.2) and a depth-ërst traversal.
Given a graph 𝐺 = (𝑉, 𝐸), a series of depth-ërst searches that visit all the vertices
in 𝑉(𝐺) is referred to as a depth-ërst traversal. If 𝐺 is a connected graph, a

20

6 GRAPH STRUCTURE ANALYSIS

Algorithm 8: Depth First Traversal
𝑘 =first (𝑉)
wh i l e 𝑘 ≠ 𝑒𝑜𝑙

map (𝛾, 𝑣, 𝑢𝑛𝑣𝑖𝑠𝑖𝑡𝑒𝑑)
𝑘 =next (𝑉, 𝑘)

𝑑𝑓𝑛 = 0
𝑘 =first (𝑉)
wh i l e 𝑘 ≠ 𝑒𝑜𝑙

i f evaluate (𝛾, 𝑣) is 𝑢𝑛𝑣𝑖𝑠𝑖𝑡𝑒𝑑
𝑑𝑒𝑝𝑡ℎ = 0
dfs (𝑣)

𝑘 =next (𝑉, 𝑘)

single depth-ërst search produces a depth-ërst traversal. Otherwise, a depth-
ërst traversal will discover all of the connected components of 𝐺.

Algorithm 8 determines a depth-ërst traversal of 𝐺. It assumes the buffer 𝑣
is used to communicate with the vertex list.

e time complexity of a depth-ërst traversal is linear if dfs is linear.

6 Graph Structure Analysis

A depth-ërst search can be used to preprocess a graph or it can be directly em-
bedded in a more complex algorithm. In the latter case, the action taken when
a vertex is visited depends on the algorithm in which the search is embedded.
In the former case, the normal objective of the search is to gather information
about the structure of the graph (as seen from the vantage point of the search).

Recall that Algorithms 5 and 6 gathered three bits of structural information
as it proceeded:

• e depth-ërst labeling 𝛾(𝑣) is the order in which 𝑣 was visited during the
search. Depth-ërst numbers range from 1 to |𝑉|. e root is mapped to
one.

• e predecessor (or parent) mapping 𝜌(𝑣) identiëes the vertex from which
𝑣 was discovered during the search. e root has no parent.

• e depth mapping 𝛿(𝑣) is the length of the path from 𝑣 to its root in the
depth-ërst spanning tree of 𝐺.

21

6.1 Connected Components of a Graph 6 GRAPH STRUCTURE ANALYSIS

Algorithm 9: Extract the Connected Components of a Graph
𝑘 =first (𝑉)
wh i l e 𝑘 ≠ 𝑒𝑜𝑙

map (𝛾, 𝑣, 𝑢𝑛𝑣𝑖𝑠𝑖𝑡𝑒𝑑)
𝑘 =next (𝑉, 𝑘)

𝑑𝑓𝑛 = 0
𝑘 =first (𝐶)
wh i l e 𝑘 ≠ 𝑒𝑜𝑙

i f evaluate (𝛾, 𝑣) is 𝑢𝑛𝑣𝑖𝑠𝑖𝑡𝑒𝑑
𝑑𝑒𝑝𝑡ℎ = 0
dfs (𝑣)

𝑘 =next (𝐶, 𝑘)

Subsequent sections provide algorithmic examples of structural information
about a graph that is obtained by making small alterations to the depth-ërst
search and depth-ërst traversal algorithms.

6.1 Connected Components of a Graph

If 𝐶(𝐺) ⊂ 𝑉(𝐺), a similar procedure (Algorithm 9) extracts a set of components
from 𝐺 whose roots are deëned by 𝐶(𝐺). It assumes that 𝐶(𝐺) and 𝑉(𝐺) are
maintained in simple lists (Section 3.3 examines the list data type).

6.2 Isolated Vertex Detection

Isolated vertices are detected during a depth-ërst traversal of a graph. e detec-
tion scheme is based on the observation that an isolated vertex processed by dfs
increases the depth-ërst number by exactly one. Algorithm 10 implements this
observation in the main loop of a depth-ërst traversal (Algorithm 8). It assumes
the buffer 𝑣 provides communication with the vertex list.

Since the isolated vertex test is an O(1) operation, it does not increase the
complexity of a depth-ërst traversal.

6.3 Cycle Detection

It can be shown that each back edge detected during a depth-ërst search of the
graph 𝐺 = (𝑉, 𝐸) corresponds to a cycle in 𝐺. Recall from Section 5.3 that a
back edge connects a vertex to one of its ancestors in the spanning tree.

22

6.3 Cycle Detection 6 GRAPH STRUCTURE ANALYSIS

Algorithm 10: Isolated Vertex Detection
𝑑𝑓𝑛 = 0
𝑘 =first (𝑉)
wh i l e 𝑘 ≠ 𝑒𝑜𝑙

i f evaluate (𝛾, 𝑣) is 𝑢𝑛𝑣𝑖𝑠𝑖𝑡𝑒𝑑
𝑑𝑒𝑝𝑡ℎ = 0
𝑖 = 𝑑𝑓𝑛
dfs (𝑣)
i f 𝑑𝑓𝑛 i s 𝑖 + 1

 
𝑘 =next (𝑉, 𝑘)

Algorithm 11: Cycle Detection in Undirected Graphs
next edge
f o r all vertices 𝑤 adjacent to 𝑣

i f evaluate (𝛾, 𝑤) is 𝑢𝑛𝑣𝑖𝑠𝑖𝑡𝑒𝑑
𝑑𝑒𝑝𝑡ℎ = 𝑑𝑒𝑝𝑡ℎ + 1
visit (𝑤, 𝑣)
𝑣 = 𝑤

e l s e
 

goto next edge

A minor modiëcation of the depth-ërst search will produce a test for cycles.
We will examine the case of cycle detection in undirected graphs ërst. It is
simpler.

6.3.1 Detecting Cycles in Undirected Graphs

Algorithm 11 implements a cycle test for undirected graphs that is illustrated
on a fragment of Algorithm 6, the non-recursive dfs procedure.

Since the cycle test is an 𝑂(1) operation, it does not increase the complexity
of the depth-ërst search.

23

6.3 Cycle Detection 6 GRAPH STRUCTURE ANALYSIS

Algorithm 12: Cycle Detection in Directed Graphs
next edge
f o r all vertices 𝑤 adjacent to 𝑣

i f evaluate (𝛾, 𝑤) is 𝑢𝑛𝑣𝑖𝑠𝑖𝑡𝑒𝑑
𝑑𝑒𝑝𝑡ℎ = 𝑑𝑒𝑝𝑡ℎ + 1
visit (𝑤, 𝑣)
𝑣 = 𝑤

e l s e
i f evaluate (𝛾, 𝑣)>evaluate (𝛾, 𝑤) and

evaluate (𝛾, 𝑟)<evaluate (𝛾, 𝑤)
 

goto next edge

6.3.2 Detecting Cycles in Directed Graphs

Testing for cycles in directed graphs is still a matter of looking for back edges.
However, the process is complicated by the fact that the edges of a digraph that
are not part of its spanning forest are not necessarily back edges either. e
following observations permit the forward edges, cross edges, and back edges of
a depth-ërst search to be distinguished efficiently.

It can be shown that the forward edges of a depth-ërst search connect ver-
tices with low depth-ërst numbers to vertices with high depth-ërst numbers.
erefore, an edge (𝑣, 𝑤) of 𝐺 that is not part of its spanning forest is a forward
edge when 𝛾(𝑣) < 𝛾(𝑤).

Conversely, (𝑣, 𝑤) is a back edge or cross edge of 𝐺 when 𝛾(𝑣) > 𝛾(𝑤).
Distinguishing between back edges and cross edges relies on the observation

that a cross edge connects the current spanning tree to a spanning tree that was
explored at an earlier stage of a depth-ërst traversal. Since the root 𝑟 of the
current spanning tree must have a larger depth-ërst number than any vertex in
any previously processed tree in the spanning forest, the condition 𝛾(𝑟) > 𝛾(𝑤)
must hold for a cross edge (𝑣, 𝑤).

erefore, an edge (𝑣, 𝑤) of 𝐺 that is not part of its spanning forest is a back
edge when the following conditions apply: 𝛾(𝑣) > 𝛾(𝑤) and 𝛾(𝑟) < 𝛾(𝑤).

is observation leads to Algorithm 12 for detecting cycles in a directed
graph, it is a modiëcation to Algorithm 6, the non-recursive depth-ërst search.

Obviously, the cycle test does not increase the complexity of the algorithm.

24

7 DETERMINING THE DEGREE OF EACH VERTEX

Algorithm 13: Determine Vertex Degree Using Adjacency List
𝑘 =first (𝑉)
wh i l e 𝑘 ≠ 𝑒𝑜𝑙

map (𝜆, 𝑣, 0)
𝑘 =next (𝑉, 𝑘)

𝑘 =first (𝑉)
wh i l e 𝑘 ≠ 𝑒𝑜𝑙

f o r all vertices 𝑤 adjacent to 𝑣
𝑛 =evaluate (𝜆, 𝑤)+1
map (𝜆, 𝑣, 𝑛)

𝑘 =next (𝑉, 𝑘)

Algorithm 14: Determine Vertex Degree of Directed Graph Using Edges
𝑘 =first (𝑉)
wh i l e 𝑘 ≠ 𝑒𝑜𝑙

map (𝜆, 𝑣, 0)
𝑘 =next (𝑉, 𝑘)

𝑘 =first (𝐸)
wh i l e 𝑘 ≠ 𝑒𝑜𝑙

𝑛 =evaluate (𝜆, 𝑒.𝑣)+1
map (𝜆, 𝑒.𝑣, 𝑛)
𝑘 =next (𝐸, 𝑘)

7 Determining the Degree of Each Vertex

If the graph 𝐺 = (𝑉, 𝐸) is represented by its adjacency list 𝐴(𝐺) and vertex list
𝑉(𝐺), Algorithm 13 develops a mapping 𝜆 whose domain is 𝑉(𝐺) and whose
range is the degree of 𝑉(𝐺). It assumes the buffer 𝑣 provides communication
with the vertex list.

If 𝐺 is a directed graph, represented by its vertex list 𝑉(𝐺) and edge list 𝐸(𝐺),
Algorithm 14 maps each vertex in 𝑉(𝐺) to its degree. It is assumed that each
edge is represented by an ordered pair of vertices (𝑣, 𝑤) and the buffer 𝑒 provides
communication with the edge list.

If 𝐺 is an undirected graph, Algorithm 15 performs the same operation. It
is assumed that each edge is represented by an unordered pair of vertices (𝑣, 𝑤).

If all the elementary operations are 𝑂(1), creating 𝜆 is linear, i.e. has com-
plexity 𝑂 (|𝑉| + |𝐸|).

25

8 VERTEX ELIMINATION

Algorithm 15: Determine Vertex Degree of Undirected Graph Using Edges
𝑘 =first (𝑉)
wh i l e 𝑘 ≠ 𝑒𝑜𝑙

map (𝜆, 𝑣, 0)
𝑘 =next (𝑉, 𝑘)

𝑘 =first (𝐸)
wh i l e 𝑘 ≠ 𝑒𝑜𝑙

𝑛 =evaluate (𝜆, 𝑒.𝑣)+1
map (𝜆, 𝑒.𝑣, 𝑛)
𝑛 =evaluate (𝜆, 𝑒.𝑤)+1
map (𝜆, 𝑒.𝑤, 𝑛)
𝑘 =next (𝐸, 𝑘)

8 Vertex Elimination

Eliminating a vertex 𝑣 from the graph 𝐺 = (𝑉, 𝐸) creates a reduced graph 𝐺 =
(𝑉 , 𝐸) with the following characteristics:

• e set of vertices 𝑉  is the subset of 𝑉(𝐺) that does not contain 𝑣.

• e set of edges 𝐸 does not contain any edges that were incident upon 𝑣.

• e set of edges 𝐸 contains edges that connect all vertices in 𝑉(𝐺) that
were adjacent to 𝑣.

In other words, you get 𝐺 from 𝐺 by

1. Removing vertex 𝑣 from 𝑉(𝐺).

2. Removing all edges that were incident upon 𝑣 from 𝐸(𝐺).

3. Adding edges to 𝐸(𝐺) that connect all the vertices that were adjacent to
𝑣.

8.1 Eliminating a Single Vertex

Assuming that the graph 𝐺 is represented by a list of vertices 𝑉(𝐺) and a list of
edges 𝐸(𝐺), Algorithm 16 eliminates vertex 𝑣 from 𝐺. It assumes the buffer 𝑒
provides communication with the edge list.

e operation adjacency_list creates an adjacency list from 𝑉(𝐺) and
𝐸(𝐺). In Section 4, Algorithms 1 and Algorithm 3 were presented to solve this

26

8.2 Eliminating Many Vertices 8 VERTEX ELIMINATION

Algorithm 16: Eliminate a Vertex from a Graph
adjacency_list (𝑉, 𝐸)
f o r all vertices 𝑤 adjacent to 𝑣

f o r all vertices 𝑧 adjacent to 𝑣
i f 𝑤 ≠ 𝑧 and find (𝐸, 𝑤, 𝑧) is 𝑒𝑜𝑙

𝑒.𝑣 = 𝑤
𝑒.𝑤 = 𝑧
link (𝐸, 1)

𝑖 =find (𝐸, 𝑤, 𝑧)
unlink (𝐸, 𝑖)

𝑖 =find (𝑉, 𝑣)
unlink (𝑉, 𝑖)

problem. New edges created during vertex elimination are arbitrarily inserted
at the beginning of the edge list. For the current purposes, the insertion point
is irrelevant.

8.2 Eliminating Many Vertices

e vertex elimination procedure outlined in Algorithm 16 of Section 8.1 is
primarily illustrative. When multiple vertices are eliminated, it is usually quite
inefficient to create an adjacency list each time you want to eliminate a vertex
from a graph.

Many of the algorithms discussed in the companion documentMatrix Algo-
rithms1 require an efficient vertex elimination model that supports the sequen-
tial elimination of all vertices 𝑉(𝐺) from the graph 𝐺 = (𝑉, 𝐸). e procedures
are often constrained such that each stage of the process eliminates the min-
imum degree vertex 𝑣 from the reduced vertex set 𝑉 (𝐺). Additionally, the
vertex elimination procedures are often prohibited the modifying of the adja-
cency list of the graph’s 𝐴(𝐺). Recall from Section 3.2 that vertex elimination
data structures must also support the following operations:

• Increase_degree increases the degree of vertex 𝑣 by one.

• Decrease_degree decreases the degree of vertex 𝑣 by one.

• Remove excises vertex 𝑣 from $𝑉 (𝐺) .
1https://vismor.com/documents/network_analysis/matrix_algorithms/

27

https://vismor.com/documents/network_analysis/matrix_algorithms/
https://vismor.com/documents/network_analysis/matrix_algorithms/
https://vismor.com/documents/network_analysis/matrix_algorithms/

8.3 Initializing Minimum Degree Vertex Tracking 8 VERTEX ELIMINATION

Algorithm 17: Initialize Minimum Degree Vertex Tracking
compute_degree (𝐴, 𝑉, 𝜆)
𝑘 =first (𝑉)
wh i l e 𝑘 ≠ 𝑒𝑜𝑙

𝑥 = 𝑣
link (𝐿, 𝑒𝑜𝑙)
𝑘 =next (𝑉, 𝑘)

merge_sort (𝐿, 𝜆)

• In_graph determines whether vertex 𝑣 is in 𝑉 (𝐺).

• Minimum_degree ënds the vertex 𝑣 in 𝑉 (𝐺) with the smallest degree.

Subsequent sections of this document examine the implementation of these
operations.

8.3 Initializing Minimum Degree Vertex Tracking

e following data structure is proposed to support efficient tracking the mini-
mum degree vertex during sequential vertex elimination:

• A mapping 𝜆 between each vertex in 𝑉(𝐺) and its degree.

• A list 𝐿 which orders 𝑉 (𝐺) by ascending degree.

Algorithm 17 initializes this data structure for the graph 𝐺 based on its adja-
cency list 𝐴(𝐺) and vertex list 𝑉(𝐺). Observe that, per the comments in Section
8.2, 𝐴(𝐺) is unchanged by this operation.

e procedure compute_degree creates the vertex degreemapping 𝜆 based
on 𝐴(𝐺) and 𝑉(𝐺). Algorithm 13 is a candidate for compute_degree.

e procedure merge_sort sorts the list 𝐿 based on the mapping 𝜆. Its
name suggests that a merge sort may be the appropriate sorting algorithm. e
minimum number of comparisons required to sort a set of 𝑛 keys is 𝑛 ln 𝑛. e
merge sort algorithm is 𝑂(𝑛 ln 𝑛) in both its best and worst case and is partic-
ularly suited for use with linked lists. Furthermore, merge sort does not suffer
from the potentially catastrophic worst case stack growth that is common in re-
cursive sorting algorithms. e depth of recursion of a merge sort is bounded by
log 𝑛. is implies that sorting 1,000,000 items would require no more than
20 nested function calls. An efficient implementation of merge sort needs at
most 4 to 8 bytes of local stack space for each level of recursion.

28

8.4 Maintaining the Reduced Graph 8 VERTEX ELIMINATION

Algorithm 18: Increase the Degree of a Vertex
increase_degree (𝑣)

𝑛 =evaluate (𝜆, 𝑣)+1
map (𝜆, 𝑣, 𝑛)
𝑖 = 𝑘 =find (𝐿, 𝑣)
wh i l e 𝑘 ≠ 𝑒𝑜𝑙 and 𝑛 >evaluate (𝜆, 𝑘)

𝑘 = 𝑛 e x t (𝐿, 𝑘)
link (𝐿, 𝑘, 𝑣)
unlink (𝐿, 𝑖)

Algorithm 19: Decrease the Degree of a Vertex
decrease_degree (𝑣)

𝑛 =evaluate (𝜆, 𝑣)−1
map (𝜆, 𝑣, 𝑛)
𝑖 = 𝑘 =find (𝐿, 𝑣)
wh i l e 𝑘 ≠ 𝑒𝑜𝑙 and 𝑛 <evaluate (𝜆, 𝑘)

𝑘 =previous (𝐿, 𝑘)
link (𝐿, 𝑘, 𝑣)
unlink (𝐿, 𝑖)

8.4 Maintaining the Reduced Graph

With the vertex elimination data structure established, maintenance and query
operations are straightforward. Algorithm 18 implements increase_degree.
It assumes the list communication buffer is 𝑥.

In words, Algorithm 18 increases the degree of 𝑣 and scans the degree list 𝐿
in ascending order until the new position of 𝑣 is located. It then adds 𝑣 into 𝐿 at
this position and deletes 𝑣 from the old position. In the worst case, the loop in
Algorithm 18 is an 𝑂 |𝑉 | operation. is degenerate case only occurs when
all vertices in 𝑉 (𝐺) have the same degree and 𝑣 is the ërst item in 𝐿.

Algorithm 19 implements the decrease_degree operation. It decreases
the degree of 𝑣 then scans the degree list 𝐿 in descending order until the new
position of 𝑣 is located. It then adds 𝑣 into 𝐿 at this position and deletes 𝑣 from
the old position. Once again, Algorithm 19 is an 𝑂 |𝑉 | in the worse case. In
the average case, it is much closer 𝑂(1).

e remove operator (Algorithm 20) excises 𝑣 from the degree list 𝐿 and
makes sure its degree count is less than or equal to zero in the mapping 𝜆.

29

8.5 Querying the Reduced Graph State REFERENCES

Algorithm 20: Remove a Vertex from the Reduced Graph
remove (𝑣)

𝑖 =find (𝐿, 𝑣)
unlink (𝐿, 𝑖)
map (𝜆, 𝑣, 0)

Algorithm 21: Determine if a Vertex is in the Reduced Graph
in_graph (𝑣)

i f evaluate (𝜆, 𝑣)> 0
𝑣   

e l s e
𝑣    

8.5 Querying the Reduced Graph State

A couple of reduced graph state operations are also speciëed in Section 8.1.
eir implementations tend to fall out trivially from the data structures used
for minimum degree vertex tracking.

e in_graph operator is realized by the mapping 𝜆. If the degree of ver-
tex 𝑣 is greater than zero, then 𝑣 is in 𝑉 (𝐺). Algorithm 21 formalizes this
observation.

In a similar vein, the minimum_degree operation is realized by the list op-
eration first. By deënition, first(𝐿) gets the minimum degree vertex. Recall
that the minimum degree vertex list 𝐿 orders the vertices by ascending degree.

References

[1] A. Aho, J. Hopcroft, and J. Ullman, e Design and Analysis of Computer
Algorithms, Addison-Wesley, Reading, Massachusetts, 1983. 5

[2] E. Horowitz and S. Sahni, Fundamentals of Computer Algorithms, Computer
Science Press, Rockville, Maryland, 1978. 5, 20

[3] S. Even, Graph Algorithms, Computer Science Press, Rockville, Maryland,
1980. 5

30

	Graph Nomenclature
	Subgraph
	Directed Graph
	Undirected Graph
	Paths and Connected Graphs
	Cyclic Graph
	Acyclic Graph

	Modeling Graphs
	Representing Graphs as Lists
	Representing Graphs as Adjaceny Matrices
	Representing Sparse Graphs as Adjaceny Lists

	Abstract Data Types for Graphs
	Adjacency List
	Reduced Graph
	List
	Mapping

	Creating Adjacency Lists
	Depth First Search
	Recursive Depth First Search
	Non-recursive Depth First Search
	Depth First Spanning Trees
	Depth First Traversal

	Graph Structure Analysis
	Connected Components of a Graph
	Isolated Vertex Detection
	Cycle Detection
	Detecting Cycles in Undirected Graphs
	Detecting Cycles in Directed Graphs

	Determining the Degree of Each Vertex
	Vertex Elimination
	Eliminating a Single Vertex
	Eliminating Many Vertices
	Initializing Minimum Degree Vertex Tracking
	Maintaining the Reduced Graph
	Querying the Reduced Graph State

